Docente
|
CAPOBIANCO ROBERTO
(programma)
- ML (6 CFU) Syllabus -
● Classificazione - Concetti di Base, Decision Trees, Bayes
● Apprendimento, Modelli Lineari, Support Vector Machines, Kernels, Multiple
classifiers
● Regressione - Regressione Lineare e Logistica, Instance based (K-NN),
● Perceptron, Reti Neurali, Deep neural networks (CNN)
● Apprendimento non supervisionato - Clustering (k-Means), Variabili latenti (EM),
● Reinforcement learning - MDP, Q-learning
- Reinforcement Learning (3 CFU Aggiuntivi) -
● Ragionamento Probabilistico
● Ragionamento Probabilistico su scala temporale
● MDPs e Bandit Problems
● Model-free reinforcement learning (Monte-Carlo, Temporal Difference, etc.)
● Nozioni di model-based reinforcement learning
● Metodi Policy Gradient e Actor-Critic
- Reinforcement Learning: Reinforcement Learning - An Introduction, II ed. Sutton & Barto
- Probabilistic Reasoning: Artificial Intelligence: A Modern Approach, Russell & Norvig
|