Corso di laurea: Bioinformatics - Bioinformatica
A.A. 2020/2021
Conoscenza e capacità di comprensione
Il laureato in Bioinformatica al termine del corso di studi deve possedere solide basi negli ambiti della biomedicina, della matematica, dell'informatica e della chimica, nonché competenze di base della statistica e della fisica. Tali competenze dovranno formare un quadro organico che gli permetterà di integrarsi in un'ambiente in cui siano presenti competenze differenziate nell'ambito della biologia e medicina, dell'informatica e dell'analisi di grandi quantità di dati. Sarà inoltre in grado di elaborare e/o applicare idee originali anche in un contesto di ricerca. Lo studente deve essere in grado di padroneggiare le metodologie di analisi e sviluppo di algoritmi, con particolare enfasi alle applicazioni bioinformatiche, e analizzarne la complessità. Deve altresì conoscere a fondo le basi dei linguaggi di programmazione e saper usare tali linguaggi nella soluzione di problemi bioinformatici complessi. Deve conoscere la teoria e le tecniche per la gestione e interrogazione di dati biologici e biomedici. Deve conoscere le tecniche di analisi computazionale di dati biologici di natura complessa. Inoltre, deve avere una visione integrata della biologia cellulare e molecolare in modo da saper cogliere sia gli aspetti biologici/molecolari che informazionali/algorimici, propri dei meccanismi e processi della vita.
Aspetti specifici dell'area bioinformatica rispetto a conoscenze e capacità di comprensione nell'area delle scienze dell'informazione e ingegneria, riguardano in particolare: l'acquisizione di competenze teoriche, metodologiche, sperimentali ed applicative nelle aree fondamentali dell'informatica, con particolare riguardo alle applicazioni inerenti attività bioinformatiche di laboratori bio-medici.
Aspetti specifici del corso di laurea rispetto a conoscenze e capacità di comprensione nell'area biologica e bio-medica sono in particolare: acquisizione di competenze teoriche, metodologiche, sperimentali ed applicative nelle aree fondamentali dell'informatica, della genetica e della biologia cellulare e molecolare, anche con applicazioni inerenti attività più specificatamente diagnostiche e terapeutiche; conoscenza delle tecniche e dei metodi di progettazione per la analisi di dati, e per la realizzazione di sistemi informatici in ambito bio-medico.
A tal fine è necessario che il laureato sia in grado di:
- descrivere i principi e i metodi matematici, statistici e informatici, nonché i principi e i concetti generali della fisica utili per l'analisi e comprensione, su base quantitativa, dei sistemi e fenomeni biologici;
- descrivere i principi generali delle materie di area chimica per una descrizione a livello molecolare, dei fenomeni biologici.
Il raggiungimento degli obiettivi formativi è ottenuto mediante la frequenza delle lezioni ed esercitazioni in aula e ai laboratori didattici previsti dal percorso formativo. La verifica di tali conoscenze sarà attuata attraverso prove di esame in itinere e finali. Sarà anche fondamentale il tirocinio sperimentale finalizzato alla prova finale durante il quale gli studenti dovranno applicare le conoscenze acquisite a un progetto scientifico che faccia loro comprendere come esse si possano integrare in un approccio complessivo e multidisciplinare.
Capacità di applicare conoscenza e comprensione
I programmi degli insegnamenti e le modalità di verifica, fanno sì che lo studente impari ad applicare le sue competenze di base nei diversi contesti, per affrontare e risolvere autonomamente problemi. La specifica presenza di attività di laboratorio in tutti gli insegnamenti comuni e obbligatori permette allo studente di verificare sul campo e di applicare concretamente le competenze acquisite.
In particolare i laureati in Bioinformatica avranno le seguenti capacità di applicare le loro conoscenze e competenze nell’area delle metodologie e applicazioni biologiche e bio-mediche : capacità di progettare, implementare, ed integrare moduli software per la strutturazione di servizi web nella gestione di dati bio-molecolari di interesse bio-medico; capacità di progettare algoritmi e relativi strumenti software per l’analisi dei dati bio-molecolari con tecniche di machine learning e per il mining di grosse moli di dati; capacità di proporre e progettare piattaforme distribuite per la gestione integrata di dati clinici e biologici a supporto delle attività cliniche; capacità di proporre soluzioni informatiche innovative nell’ambito di team di ricerca interdisciplinari in ambito biologico e bio-medico; capacità di integrare soluzioni informatiche avanzate con particolare riguardo alle aree della microbiologia di laboratorio, della genetica, dell’immunologia e patologie molecolari sia animali che vegetali, della chimica farmaceutica orientata alla medicina personalizzata.
Il laureato in Bioinformatica sarà quindi in grado di:
- applicare sinergicamente i metodi matematici, statistici e informatici per l'analisi e l'elaborazione dell'informazione e dei dati sperimentali relativamente ad aspetti specifici della biologia;
- leggere e comprendere testi, anche avanzati di biologia e di informatica.
La verifica del raggiungimento di questo obiettivo formativo è ottenuta con valutazioni finali (esami) scritte ed orali atte a rilevare l'efficacia dei processi di apprendimento, ma anche mediante le verifiche pratiche affrontate negli insegnamenti comuni in ambito biologico e bio-medico. Tali capacità saranno integrate attraverso la partecipazione a laboratori di carattere individuale e verificate nell'elaborazione della tesi finale.
Autonomia di giudizio
I laureati avranno la capacità di riconoscere i tipi di dati e le informazioni utili per la comprensione e l’utilizzo consapevole nella formulazione e soluzione di problemi nell’ambito della biologia molecolare e cellulare, con particolare riferimento all’ambito bio-medico, diagnostico e terapeutico. Più precisamente, saranno in grado di selezionare gli aspetti più rilevanti di nuove applicazioni e tematiche per inquadrarle in schemi già noti e, a partire da questi, costruire soluzioni soddisfacenti sia sul piano metodologico che su quello di integrazione con le necessità e le esigenze del corrispondente personale bio-medico. Particolarmente importante è la sua capacità di valutazione autonoma per essere in grado anche di proporre soluzioni innovative e suggerire domande e problemi di natura biologica. Il laureato deve saper efficacemente spiegare le proprie scelte metodologiche e di metterle in relazione ad altre per valutare i pro e i contro, sia sul piano della significatività statistica che su quello di modelli concorrenti presenti in letteratura.
Le prove di valutazione di ciascun corso saranno gli elementi a dimostrazione del raggiungimento degli obiettivi formativi, oltre alle capacità dimostrate durante la prova finale. Inoltre, gli obiettivi formativi saranno supportati da una significativa attività di laboratorio durante il quale specifici progetti saranno concepiti e sviluppati in autonomia.Abilità comunicative
Il laureato avrà la capacità di presentare al meglio i risultati e le premesse metodologiche del proprio lavoro attraverso mezzi di comunicazione orale e scritta, anche in lingua inglese. Tale capacità dovrà metterlo in grado di avere relazioni dirette ed efficaci con tutte le figure professionali presenti nel suo ambiente di lavoro, in particolare con il settore biologico/medico e matematico/informatico.
A tal fine gli studenti acquisiranno nel corsi di studi:
• capacità relazionali con i settori biologico/medico ed informatico presente nei laboratori bio-medici;
• capacità di inserimento in gruppi di lavoro eterogenei;
• capacità di comunicare con chiarezza logica ed espositiva e trasmettere ad un pubblico eterogeneo i risultati delle sue analisi e dei modelli sviluppati;
• capacità di mettere in luce le componenti bioetiche dell'impiego della bioinformatica;
• capacità linguistiche.
Le abilità comunicative saranno gradualmente formate e rafforzate mediante la riflessione critica multidisciplinare all'interno dei singoli insegnamenti, incoraggiando domande e discussioni alla fine delle lezioni, esposizioni di singoli argomenti da parte degli studenti al docente e ai colleghi, sessioni di discussione critica sui risultati delle esercitazioni pratiche e di laboratorio e soprattutto stimolando un’interazione continua tra il relatore della tesi finale e i laureandi. Tali abilità saranno continuamente verificate nelle prove d'esame ed in quella di laurea, e anche durante la preparazione e stesura della tesi.Capacità di apprendimento
I laureati acquisiranno capacità e competenze a carattere di base e specifiche nei settori trainanti della bioinformatica e che consisteranno essenzialmente nella capacità di integrazione di dati molecolari su larga scala. Un punto fondamentale è la capacità di mantenere le proprie competenze sempre allo stato dell'arte mediante partecipazione a conferenze e workshop e a corsi di aggiornamento professionale, e la conoscenza della letteratura di settore. Tali capacità saranno verificate nelle valutazioni d'esame e nella prova finale. I docenti che sono stati selezionati per l'avvio del CdS in Bioinformatica hanno dichiarato un forte impegno partecipativo con la convinzione che la preparazione di Bioinformatici richiede una integrazione assoluta dei contenuti didattici. I docenti del CdS in Bioinformatica avranno incontri periodici per la valutazione dei risultati ottenuti dai loro studenti, per una ulteriore maggiore integrazione dei contenuti dei corsi, per affinare con l'esperienza ed il coordinamento le modalità di trasmissione delle competenze.
Circa la valutazione dei livelli di apprendimento degli studenti si metterà particolare cura nell'individuare modalità assolutamente trasparenti che garantiscano i migliori risultati.
Requisiti di ammissione
Per essere ammessi al Corso di Laurea in Bioinformatica occorre essere in possesso di un diploma di scuola secondaria di secondo grado o di altro titolo di studio conseguito all'estero, riconosciuto idoneo. Sono richieste conoscenze in Fisica, Chimica, Biologia, Matematica. Inoltre si deve essere in possesso di una buona conoscenza della lingua inglese. Essendo il CdS a numero programmato la verifica sarà effettuata con un test di ingresso.
Le modalità di assolvimento, entro il primo anno di corso, di eventuali obblighi formativi aggiuntivi verranno definite nel regolamento didattico del corso stesso.
Per l'ammissione al corso si richiede un livello di conoscenza dell'inglese di livello B2.Prova finale
La prova finale si articolerà in un elaborato bioinformatico all’interno del tirocinio da svolgere presso laboratori scientifici biologici e bio-medici che utilizzano tecnologie bioinformatiche per l’analisi dei dati o presso industrie del settore farmaceutico, biotecnologico sia red che green, ed industrie di bioinformatica.Orientamento in ingresso
Il SOrT è il servizio di Orientamento integrato della Sapienza. Il servizio ha una sede centrale nella Città universitaria e sportelli dislocati presso le Facoltà. Nei SOrT gli studenti possono trovare informazioni più specifiche rispetto alle Facoltà e ai corsi di laurea e un supporto per orientarsi nelle scelte. L'ufficio centrale e i docenti delegati di Facoltà coordinano i progetti di orientamento in ingresso e di tutorato, curano i rapporti con le scuole medie superiori e con gli insegnanti referenti dell'orientamento in uscita, propongono azioni di sostegno nella delicata fase di transizione dalla scuola all'università e supporto agli studenti in corso, forniscono informazioni sull'offerta didattica e sulle procedure amministrative di accesso ai corsi.
Iniziative e progetti di orientamento:
1. "Porte aperte alla Sapienza".
L'iniziativa, che si tiene ogni anno presso la Città Universitaria, è rivolta prevalentemente agli studenti delle ultime classi delle Scuole Secondarie Superiori, ai docenti, ai genitori ed agli operatori del settore; essa costituisce l'occasione per conoscere la Sapienza, la sua offerta didattica, i luoghi di studio, di cultura e di ritrovo ed i molteplici servizi disponibili per gli studenti (biblioteche, musei, concerti, conferenze, ecc.); sostiene il processo d'inserimento universitario che coinvolge ed interessa tutti coloro che intendono iscriversi all'Università. Oltre alle informazioni sulla didattica, durante gli incontri, è possibile ottenere indicazioni sull'iter amministrativo sia di carattere generale sia, più specificatamente, sulle procedure di immatricolazione ai vari corsi di studio e acquisire copia dei bandi per la partecipazione alle prove di accesso ai corsi. Contemporaneamente, presso l'Aula Magna, vengono svolte conferenze finalizzate alla presentazione dell'offerta formativa di tutte le Facoltà dell'Ateneo.
2. Progetto "Un Ponte tra Scuola e Università"
Il Progetto "Un Ponte tra scuola e Università" nasce con l'obiettivo di favorire una migliore transizione degli studenti in uscita dagli Istituti Superiori al mondo universitario e facilitarne il successivo inserimento nella nuova realtà.
Il progetto si articola in tre iniziative:
a) Professione Orientamento - Seminari dedicati ai docenti degli Istituti Superiori referenti per l'orientamento, per favorire lo scambio di informazioni tra la Scuola Secondaria e la Sapienza;
b) La Sapienza si presenta - Incontri di presentazione delle Facoltà e lezioni-tipo realizzati dai docenti della Sapienza e rivolti agli studenti delle Scuole Secondarie su argomenti inerenti ciascuna area didattica;
c) La Sapienza degli studenti – Interventi nelle Scuole finalizzati alla presentazione dei servizi offerti dalla Sapienza e racconto dell'esperienza universitaria da parte di studenti "mentore", studenti senior appositamente formati.
3. Progetto "Conosci te stesso"
Consiste nella compilazione, da parte degli studenti, di un questionario di autovalutazione per accompagnare in modo efficace il processo decisionale degli stessi studenti nella scelta del loro percorso formativo.
4. Progetto "Orientamento in rete"
Si tratta di un progetto di orientamento e di riallineamento sui saperi minimi. L'iniziativa prevede lo svolgimento di un corso di preparazione, caratterizzato una prima fase con formazione a distanza ed una seconda fase realizzata attraverso corsi intensivi in presenza, per l'accesso alle Facoltà a numero programmato dell'area biomedica, sanitaria e psicologica, destinato agli studenti degli ultimi anni di scuola secondaria di secondo grado.
5. Esame di inglese
Il progetto prevede la possibilità di sostenere presso la Sapienza, da parte degli studenti dell'ultimo anno delle Scuole Superiori del Lazio, l'esame di inglese per il conseguimento di crediti in caso di successiva iscrizione a questo Ateneo.
6. Percorsi per le competenze trasversali e per l'orientamento - PCTO (ex alternanza scuola-lavoro).
Si tratta di una modalità didattica che, attraverso l'esperienza pratica, aiuta gli studenti delle Scuole Superiori a consolidare le conoscenze acquisite a scuola e a testare sul campo le proprie attitudini mentre arricchisce la formazione e orienta il percorso di studio.
7. Tutorato in ingresso
Sono previste attività di tutorato destinate agli studenti e alle studentesse dei cinque anni delle Scuole Superiori.
Facoltà di Farmacia e Medicina, Ingegneria dell’Informazione Informatica e Statistica, Medicina e Odontoiatria, Scienze matematiche Fisiche e Naturali
Testo normativo del Corso di Laurea Interfacoltà in BIOINFORMATICS (classe L-2)
A.A. 2020/2021
REQUISITI DI AMMISSIONE
Per essere ammessi al Corso di Laurea in Bioinformatica occorre essere in possesso di un diploma di scuola secondaria di secondo grado o di altro titolo di studio conseguito all'estero, riconosciuto idoneo. Sono richieste conoscenze in Fisica, Chimica, Biologia, Matematica. Inoltre si deve essere in possesso di una buona conoscenza della lingua inglese. Essendo il CdS a numero programmato la verifica sarà effettuata con un test di ingresso.
Il numero di posti disponibili fissato per l’a.a. 2020/2021 è di 50. L’ammissione all’immatricolazione è subordinata al raggiungimento di una posizione utile nella relativa graduatoria di merito.
I dettagli sulle caratteristiche, e la modalità di svolgimento della prova, sono definiti nel Bando di ammissione, che sarà pubblicato in coincidenza con l’apertura della Manifestazione “Porte Aperte” alla Sapienza sulla pagina dell’Offerta Formativa del sito di Ateneo
http://www.uniroma1.it/didattica/offerta-formativa
PASSAGGI, TRASFERIMENTI, ABBREVIAZIONI DI CORSO, RICONOSCIMENTO CREDITI
Passaggi e trasferimenti
Le richieste di trasferimento al corso di laurea in Bioinformatica devono essere presentate entro le scadenze e con le modalità specificate nel Manifesto degli studi di Ateneo.
Abbreviazioni di corso
Chi è già in possesso del titolo di diploma triennale, di laurea triennale, quadriennale, quinquennale, specialistica acquisita secondo un ordinamento previgente, di laurea o laurea magistrale acquisita secondo un ordinamento vigente e intenda conseguire un ulteriore titolo di studio può chiedere al CdS l’iscrizione ad un anno di corso successivo al primo.
Le domande sono valutate dal CdS, che in proposito a) valuta la possibilità di riconoscimento totale o parziale della carriera di studio fino a quel momento seguita, con la convalida di parte o di tutti gli esami sostenuti e degli eventuali crediti acquisiti, la relativa votazione; b) indica l’anno di corso al quale lo studente viene iscritto; c) formula il percorso formativo per il conseguimento del titolo di studio.
Le richieste devono essere presentate entro le scadenze e con le modalità specificate nel Manifesto degli studi di Ateneo.
NOTA BENE: Uno studente non può immatricolarsi o iscriversi ad un corso di laurea appartenente alla medesima classe nella quale ha già conseguito il diploma di laurea.
Criteri per il riconoscimento crediti
Possono essere riconosciuti tutti i crediti formativi universitari (CFU) già acquisiti se relativi ad insegnamenti che abbiano contenuti, documentati attraverso i programmi degli insegnamenti, coerenti con uno dei percorsi formativi previsti dal corso di laurea.
Il CdS può deliberare l’equivalenza tra Settori scientifico disciplinari (SSD) per l’attribuzione dei CFU sulla base del contenuto degli insegnamenti ed in accordo con l’ordinamento del corso di laurea.
I CFU già acquisiti relativi agli insegnamenti per i quali, anche con diversa denominazione, esista una manifesta equivalenza di contenuto con gli insegnamenti offerti dal corso di laurea possono essere riconosciuti come relativi agli insegnamenti con le denominazioni proprie del corso di laurea a cui si chiede l’iscrizione. In questo caso, il CdS delibera il riconoscimento con le seguenti modalità: a) se il numero di CFU corrispondenti all'insegnamento di cui si chiede il riconoscimento coincide con quello dell'insegnamento per cui viene esso riconosciuto, l’attribuzione avviene direttamente; b) se i CFU corrispondenti all'insegnamento di cui si chiede il riconoscimento sono in numero diverso rispetto all'insegnamento per cui esso viene riconosciuto, il CdS esaminerà il curriculum dello studente ed attribuirà i crediti eventualmente dopo colloqui integrativi.
PERCORSI FORMATIVI
Un percorso formativo contiene la lista di tutti gli insegnamenti previsti nella carriera dello studente, compresi gli insegnamenti relativi ai 12 CFU a scelta dello studente. Questi ultimi possono essere scelti fra tutti quelli presenti nell’ambito dell’intera offerta formativa della Sapienza.
Ogni studente deve ottenere l’approvazione ufficiale del proprio completo percorso formativo da parte del CdS prima di poter verbalizzare esami relativi ad insegnamenti che non siano obbligatori per tutti gli studenti, pena l’annullamento dei relativi verbali d’esame.
L’adesione ad un percorso formativo può essere effettuata una sola volta per ogni anno accademico, a partire dall’inizio del terzo anno di corso.
Eventuali scadenze per la presentazione del percorso formativo saranno indicate sul sito web del Corso di Laurea.
Lo studente può ottenere l’approvazione del suo percorso formativo individuale attraverso la propria pagina INFOSTUD.
Ad eccezione gli insegnamenti relativi ai 12 CFU a scelta dello studente, non sarà possibile inserire nel percorso formativo individuale insegnamenti non previsti nell’Offerta Formativa.
MODALITÀ DIDATTICHE
Le attività didattiche sono di tipo convenzionale e distribuite su base semestrale.
Gli insegnamenti sono impartiti attraverso lezioni ed esercitazioni in aula e attività in laboratorio, organizzando l’orario delle attività in modo da consentire allo studente un congruo tempo da dedicare allo studio personale.
La durata nominale del corso di laurea è di 6 semestri, pari a tre anni.
Crediti formativi universitari
Il credito formativo universitario (CFU) misura la quantità di lavoro svolto da uno studente per raggiungere un obiettivo formativo. I CFU sono acquisiti dallo studente con il superamento degli esami o con l’ottenimento delle idoneità, ove previste.
Il sistema di crediti adottato nelle università italiane ed europee prevede che ad un CFU corrispondano 25 ore di impegno da parte dello studente, distribuite tra le attività formative collettive istituzionalmente previste (ad es. lezioni, esercitazioni, attività di laboratorio) e lo studio individuale.
Nel corso di laurea in Bioinformatica, in accordo con il regolamento didattico di Ateneo, un CFU corrisponde a 8 ore di lezione, oppure a 12 ore di laboratorio o esercitazione guidata, oppure a 20 ore di formazione professionalizzante (con guida del docente su piccoli gruppi) o di studio assistito (esercitazione autonoma di studenti in aula/laboratorio, con assistenza didattica).
Le schede individuali di ciascun insegnamento, consultabili sul sito web del corso di laurea, riportano la ripartizione dei CFU e delle ore di insegnamento nelle diverse attività, insieme ai prerequisiti, agli obiettivi formativi e ai programmi di massima.
Il carico di lavoro totale per il conseguimento della laurea è di 180 CFU.
Calendario didattico
Il calendario didattico è organizzato in due semestri e tre sessioni di esami.
I periodi di lezione ed esami non si possono sovrapporre.
Gli esami sostenuti entro il 31 gennaio dell’anno solare successivo alla conclusione di un anno accademico sono pertinenti all’anno accademico precedente e non richiedono reiscrizione.
Prove d’esame
La valutazione del profitto individuale dello studente, per ciascun insegnamento, viene espressa mediante l’attribuzione di un voto in trentesimi, nel qual caso il voto minimo per il superamento dell'esame è 18/30, oppure di una idoneità.
MODALITÀ DI FREQUENZA, PROPEDEUTICITÀ, PASSAGGIO AD ANNI SUCCESSIVI
PROPEDEUTICITÀ.
Si riportano di seguito le propedeuticità previste.
SONO VINCOLANTI le seguenti PROPEDEUTICITA':
Non si possono sostenere gli esami del terzo anno senza avere completato quelli del primo.
REGIME A TEMPO PARZIALE
I termini e le modalità per la richiesta del regime a tempo parziale nonché le relative norme sono stabilite nel Manifesto di Ateneo e sono consultabili sul sito web della Sapienza.
TUTORATO
Gli studenti del corso di laurea in Bioinformatica possono usufruire dell'attività di tutorato svolta dai docenti indicati dal CdS.
PROVA FINALE
La prova finale consiste nella stesura, nella presentazione e nella discussione di un elaborato, preparato autonomamente dallo studente.
L’elaborato sarà la sintesi di una ricerca bibliografica oppure una relazione su un’attività di tipo sperimentale condotta dallo studente in laboratorio o sul campo, sotto la guida di un docente del Corso di Laurea.
La votazione finale si basa sulla valutazione del curriculum degli studi, della dissertazione e della prova finale, e su ulteriori elementi rivolti ad incentivare il superamento degli esami nei tempi stabiliti dall’ordinamento didattico. Eventuali stage di formazione in Italia o all’estero, inclusa la partecipazione al progetto Erasmus, purché ben documentati, potranno essere presi in considerazione dalla Commissione per la lode o per un arrotondamento del voto finale. La relativa documentazione dovrà essere consegnata in Segreteria Didattica all’atto della consegna dell’elaborato finale.
Le scadenze e le modalità di presentazione delle domande di attribuzione della prova finale e di consegna degli elaborati sono indicate sul sito web del Corso di Laurea.
La Commissione di laurea esprime la votazione in centodecimi e può, all’unanimità, concedere al candidato il massimo dei voti con lode.
APPLICAZIONE DELL’ART. 6 DEL REGOLAMENTO STUDENTI (R.D. 4.6.1938, N. 1269)
Lo studente iscritto al corso di laurea in Bioinformatica, onde arricchire il proprio curriculum degli studi, in aggiunta agli insegnamenti previsti per il conseguimento del titolo di studio cui aspira, può iscriversi, per ciascun anno accademico, a non più di due insegnamenti di altri Corsi di studio di pari livello e di medesimo ordinamento della Sapienza. Il CdS di Bioinfomatica esprimerà un parere ove la Segreteria Studenti lo richieda.
Tali esami non concorrono al raggiungimento dei CFU previsti per il conseguimento del titolo e non fanno media, ma sono solo aggiunti alla carriera dello studente.
Lo studente che voglia fruire della possibilità prevista dal presente articolo deve presentare alla Segreteria Studenti della facoltà una domanda scritta nei termini previsti dal Manifesto degli Studi di Ateneo.
Visto il significato scientifico e culturale di tale norma, il CdS ha deliberato che tale richiesta possa essere avanzata soltanto da studenti che abbiano ottenuto almeno 6 crediti.
La Segreteria studenti fa capo alla Segreteria della Facoltà di Farmacia e Medicina (scala B piano rialzato Palazzina Affari generali).
La segreteria didattica fa capo alla Dr.ssa Maria Carbone
(Via dei Sardi 70, Tel.: 06/4991.7827, e-mail: bioinformatics@uniroma1.it).
Sito istitituzionale: https://corsidilaurea.uniroma1.it/it/corso/2019/30422/home
Sito web del corso di laurea: bioinformatics.uniroma1.it
Per tutto quanto non espressamente indicato nel presente regolamento si fa riferimento al Regolamento Didattico di Ateneo consultabile sul sito web della Sapienza.
Percorso formativo
Primo anno
Primo semestre Secondo semestre
Principles of Mathematics 1 (6 CFU MAT/09) Principles of Mathematics 2 (6 CFU MAT/09)
Principles of Physics (6 CFU FIS/03)
Organic and inorganic chemistry 1 (6 CFU CHIM/03) Organic and inorganic chemistry 2 (6 CFU CHIM/06)
Biology of the cell 1 (6 CFU BIO/13)
Biology of the cell 2 (6 CFU BIO/13)
Introduction to biomedical statistics 1 (6 CFU SECS-S/01)
Principles of computer science I (6 CFU INF/01) Introduction to biomedical statistics 2 (6 CFU MED/01)
Secondo anno
Primo semestre Secondo semestre
Molecular biology 1 (6 CFU BIO/11) Molecular biology 2(6 CFU BIO/11)
Genetics and computational genomics (6 CFU BIO/18) Pharmaceutical chemistry (6 CFU CHIM/08)
Immunology and molecular pathologies (6 CFU MED/04)
Principles of computer science II (6 CFU ING-INF/05)
Biochemistry 1 (6 CFU BIO/10) Biochemistry 2 (6 CFU BIO/10)
Microbiology (6 CFU BIO/19) Bioinformatics I (6 CFU BIO/11)
Terzo anno
Primo semestre Secondo semestre
Bioinformatics II (6 CFU ING-INF/06) Student’s choice 12 CFU
Bioethics (6 CFU MED/02)
Molecular biology and genomics (6 CFU BIO/11)
-Student’s choice 12 CFU
Computational Systems biology
(6 CFU ING-INF/06) For the final test 9 CFU
Further linguistic knowledge 3 CFU
Stages and professional training 3 CFU
Other knowledge useful for entering into the work market 3 CFU
Signal processing and information theory (6 CFU ING-INF/03)
Algorithms (6 CFU INF/01)
Complex biomolecular networks (6 CFU ING-INF/05)
Plant functional genomics (6 CFU BIO/04)
Principles of general pathology (6 CFU MED/46)
Optimization methods for computational biology (6 CFU MAT/09
Bioinformatics in plant pathology (6 CFU AGR/12)
Faculty of Pharmacy and Medicine, Faculty of Information Engineering, Informatics and Statistics, Faculty of Medicine and Dentistry, Faculty of Mathematical, Physical and Natural Sciences
Regulatory text of the inter-faculty Bachelor’s Degree in BIOINFORMATICS (class L-2)
A.Y. 2020/2021
ADMISSION REQUIREMENTS
In order to be admitted to the bachelor’s degree in Bioinformatics it is mandatory to have an upper secondary school certificate obtained in Italy or abroad and recognized as equivalent. Knowledge of Physics, Chemistry, Biology, Mathematics are required. A good knowledge of the English language is also required. Since the degree course has accession limits, a placement test will be administered.
The pre-determined number of available positions for the a.y. 2020/2021 is 50. Admission to registration is subject to fulfilling an appropriate position in the ranked list.
Guidance on how and when to carry out the placement test, are explained in full detail in the admission announcement (“bando di ammissione”), which will be published concurrently with the event “Porte Aperte alla Sapienza” on the web page “Offerta formativa” of the Sapienza web site:
http://www.uniroma1.it/didattica/offerta-formativa
DEGREE COURSE CHANGES, UNIVERSITY TRANSFERS, DEGREE PROGRAM SHORTENING, RECOGNITION OF ACADEMIC CREDITS
Degree course changes and university transfers
The requests for transfer to the bachelor’s degree in Bioinformatics must be provided within the deadlines and in the manner specified in the Sapienza’s prospectus “Manifesto degli studi”
Degree program shortening
Who already has a Bcs equivalent diploma may ask enrollment to the second or third year.
Applications will be evaluated by the Council of the Course (CdS) which:
a) Evaluates the total or partial validation of the exams career with the relative grades
b) Establishes the year of the course in which the student will be enrolled
c) Defines the credits which remain to be acquired in order to get the final diploma
Requests should be submitted following the deadlines and rules described in the Manifesto degli studi di Ateneo
To be noted: a student cannot enroll to a Bcs course of the same class of a Bcs diploma which he already acquired.
Criteria for credits’ validation
All the previously acquired formative university credits (CFUs) can be validated if refer to courses with programs coherent with current course’s curricula described in the Manifesto.
The CdS can certify the equivalence between different disciplinary sectors for validation of CFUs on the base of the courses’ programs and of the curriculas’ structure.
Already acquired CFUs which are relative to courses evidently equivalent to courses offered by the BcS course in Bioinformatics can be validated. In this case the CdS can define the modality:
a) If the number of CFUs between the courses is identical they will be directly validated
b) In case the number is different the CdS will take in consideration an integrative test
FORMATIVE PLANS
A formative plan contains the list of all courses required for the student career, including free choice courses. These last courses could be selected in the complete courses’ offer from Sapienza University.
Each student’s formative plan should be approved by the CdS before the student is allowed to register the optional exams’ score.
A formative plan can be presented only once in each academic year.
Deadlines will be indicated on the Course’s website
The student can get its formative plan approved by telematic procedure on the INFOSTUD informatic platform.
No external courses can be inserted in the formative plan with the exception of free choice courses (12 CFU)
LEARNING MODES
Teaching activities are conventional and distributed on a semi-annual basis
The courses are delivered through frontal lessons and lab sessions in a way to allow the students to dedicate sufficient time for individual study.
The nominal Biinformatics course’s length is three years (6 semester terms)
FORMATIVE UNIVERSITY CREDITS (CFUs)
CFUs measure the amount of work required from a student to reach a formative goal. To acquire the CFUs the student has to pass the relative tests.
In the system adopted in Italian and European universities, one CFU should corresponds to 25 hours of student’s work distributed among collective activities (lessons or practical training) and individual study.
In the Bioinformatics course, according to Sapienza university’s rule s, one CFU corresponds to 8 hours of lesson or 12 hours of practical training or 20 hours of professional training or assisted study.
Informative datasheets for each course are available on the Bioinformatics course website which report the CFUs’ distribution for the different activities together with the prerequisites, the formative goals and the programs.
The total amount of CFUs required for the final Diploma is 180.
COURSES SCHEDULE
Courses are organized in two semesters with three exams sessions. Lessons and exams session cannnot overlap.
Exams passed within january 31th of the following year can be considered belonging to the previous academic year.
EXAMS
Students’ evaulations for each course are expressed by exams’ grades from 1 to 30. The lowest sufficient grade is 18/30.
PREREQUISITES
It is not allowed to take third year exams without having completed the first year exams.
PART-TIME
Modalities and deadlines for asking a part-time regime and the relative rules are available on Manifesto di Ateneo and published on the Sapienza website.
TUTORORIAL ACTIVITIES
Bioinformatics students can profit of tutorial activities by teachers as indicated by the CdS.
FINAL TEST
For the final test students should prepare a short thesis and present and discuss it in front of a teachers’ committee. Object of the thesis will be the final experimental stage or, in alternative, a research topic from scientific literature. The thesis will be supervised by a teacher of the course.
The final score will be based on the evaluation of the curriculum studiorum, on the quality of the thesis and of its presentation and discussion and on further elements like for example the time spent to complete the courses. Stages in Italy or abroad, including the participation to Erasmus projects, if appropriately documented, may be considered for improving the score or to the laude attribution. All the documents should be delivered to the didactical secretary together with the thesis.
Modalities and deadlines for fixing the final test and for thesis and documents delivery are indicated on the Course’s website.
The final test committee will express a score between 1 and 110 and will attribute the laude if unanimous.
Application of ART. 6 from Student’s regulament (R.D. 4.6.1938, N. 1269)
The students enrolled to the Bcs Bioinformatics course, in order to enrich their curriculum studiorum, in addition to the internal courses, may follow during each academic year up to two courses from other Bcs courses from Sapienza and give the relative exams. The Bioinformatics CdS will express its opinion if required by the students’ secretary.
These exams neither will be considered for the achievement of the final diploma nor will contribute to the final score, but they will be added to the student’s career.
Those students willing to profit of this possibility should submit an application to the students’ secretary, as explained in the Manifesto degli Studi. The CdS established that this application can be submitted only after achieving at least 6 CFUs in the Bioinformatics course.
Students’ secretary is in the secretary office of Pharmacy and Medicine Faculty (Segreteria della Facoltà di Farmacia e Medicina (scala B piano rialzato Palazzina Affari generali).
Didactical secretary: Dr. Maria Carbone
(Via dei Sardi 70, Tel.: 06/4991.7827, e-mail: bioinformatics@uniroma1.it).
Course website: bioinformatics.uniroma1.it
Institutional website: https://corsidilaurea.uniroma1.it/it/corso/2019/30422/home
For all the other information not included here, please see: Regolamento Didattico di Ateneo on Sapienza website.
Percorso formativo
First year
First semester Second semester
Principles of Mathematics 1 (6 CFU MAT/09) Principles of Mathematics 2 (6 CFU MAT/09)
Principles of Physics (6 CFU FIS/03)
Organic and inorganic chemistry 1 (6 CFU CHIM/03) Organic and inorganic chemistry 2 (6 CFU CHIM/06)
Biology of the cell 1 (6 CFU BIO/13) Biology of the cell 2 (6 CFU BIO/13)
Principles of computer science I (6 CFU INF/01) Introduction to biomedical statistics 1 (6 CFU SECS-S/01)
Introduction to biomedical statistics 2 (6 CFU MED/01)
30 CFU 30 CFU
Second year
First semester Second semester
Molecular biology 1 (6 CFU BIO/11) Molecular biology 2(6 CFU BIO/11)
Genetics and computational genomics (6 CFU BIO/18) Pharmaceutical chemistry (6 CFU CHIM/08)
Immunology and molecular pathologies (6 CFU MED/04)
Principles of computer science II (6 CFU ING-INF/05)
Biochemistry 1 (6 CFU BIO/10) Biochemistry 2 (6 CFU BIO/10)
Microbiology (6 CFU BIO/19) Bioinformatics I (6 CFU BIO/11)
30 CFU 30 CFU
Third year
First semester Second semester
Bioinformatics II (6 CFU ING-INF/06)
Bioethics (6 CFU MED/02)
Molecular biology and genomics (6 CFU BIO/11)
Student’s choice 12 CFU:
Computational systems biology (6 CFU ING-INF/06)
Signal processing and information theory (6 CFU ING-INF/03)
Algorithms (6 CFU INF/01)
Complex biomolecular networks (6 CFU ING-INF/05)
Plant functional genomics (6 CFU BIO/04)
Principles of general pathology (6 CFU MED/46)
Optimization methods for computational biology (6 CFU MAT/09
Bioinformatics in plant pathology (6 CFU AGR/12)
For the final test 9 CFU
Further linguistic knowledge 3 CFU
Stages and professional training 3 CFU
Other knowledge useful for entering into the work market 3 CFU
30 CFU 30 CFU
Lo studente espliciterà le proprie scelte al momento della presentazione,
tramite INFOSTUD, del piano di completamento o del piano di studio individuale,
secondo quanto stabilito dal regolamento didattico del corso di studio.
Primo anno
Primo semestre
Insegnamento
|
CFU
|
SSD
|
Ore Lezione
|
Ore Eserc.
|
Ore Lab
|
Ore Studio
|
Attività
|
Lingua
|
1049371 -
PRINCIPLES OF MATHEMATICS
(obiettivi)
Principles of mathematics 1: The aim of this course is to give the student sound mathematical basis in calculus of one or several variables and optimization in a way appropriate for a student of bioinformatics. An emphasis is given to applications and intuitive understanding of the underlying concepts. The first semester (Principles of Mathematics 1) will be devoted mainly to the study of functions of one variables, including limits, derivative and integrals. Basic optimisation results for functions of one variable will also be considered
Knowledge and understanding
The aim of the course is to give students a basic
understanding of calculus in a way appropriate to bioinformatics students. Students will also be exposed to mathematics proofs as an example of rigorous scientific reasoning.
Applying knowledge and understanding
By the end of the course, students will be able to use basic mathematical tools as applied to different environments. They will also be able to interpret in a critical way
results obtained by applying mathematical modelling technique.
Making judgements
Lectures and practical exercises will provide students with the basic ability in
assessing the main strengths and weaknesses of mathematical models when used to explain empirical evidence.
Communication
By the end of the course, students will have basic mathematical skills that will help them to talk in an appropriate way about quantitative models.
Lifelong learning skills
Students are expected to develop learning skills necessary to undertake additional and more advanced studies involving mathematics and mathematical modelling in biology.
Principles of Mathematics 2:
The aim of this course is to give the student sound mathematical basis in calculus of one or several variables and optimization in a way appropriate for a student of bioinformatics. An emphasis is given to applications and intuitive understanding of the underlying concepts. The second semester (Principles of Mathematics 2) will be devoted mainly to the study of functions of several variables, linear algebra, and differential equations. Basic optimization results for functions of several variables will also be considered.
Knowledge and understanding
The aim of the course is to give students a basic
understanding of calculus in a way appropriate to bioinformatics students. Students will also be exposed to mathematics proofs as an example of rigorous scientific reasoning.
Applying knowledge and understanding
By the end of the course, students will be able to use basic mathematical tools as applied to different environments. They will also be able to interpret in a critical way
results obtained by applying mathematical modelling technique.
Making judgements
Lectures and practical exercises will provide students with the basic ability in
assessing the main strengths and weaknesses of mathematical models when used to explain empirical evidence.
Communication
By the end of the course, students will have basic mathematical skills that will help them to talk in an appropriate way about quantitative models.
Lifelong learning skills
Students are expected to develop learning skills necessary to undertake additional and more advanced studies involving mathematics and mathematical modelling in biology.
|
|
-
PRINCIPLES OF MATHEMATICS 2
|
Erogato in altro semestre o anno
|
-
PRINCIPLES OF MATHEMATICS 1
(obiettivi)
Principles of mathematics 1: The aim of this course is to give the student sound mathematical basis in calculus of one or several variables and optimization in a way appropriate for a student of bioinformatics. An emphasis is given to applications and intuitive understanding of the underlying concepts. The first semester (Principles of Mathematics 1) will be devoted mainly to the study of functions of one variables, including limits, derivative and integrals. Basic optimisation results for functions of one variable will also be considered
Knowledge and understanding
The aim of the course is to give students a basic
understanding of calculus in a way appropriate to bioinformatics students. Students will also be exposed to mathematics proofs as an example of rigorous scientific reasoning.
Applying knowledge and understanding
By the end of the course, students will be able to use basic mathematical tools as applied to different environments. They will also be able to interpret in a critical way
results obtained by applying mathematical modelling technique.
Making judgements
Lectures and practical exercises will provide students with the basic ability in
assessing the main strengths and weaknesses of mathematical models when used to explain empirical evidence.
Communication
By the end of the course, students will have basic mathematical skills that will help them to talk in an appropriate way about quantitative models.
Lifelong learning skills
Students are expected to develop learning skills necessary to undertake additional and more advanced studies involving mathematics and mathematical modelling in biology.
Principles of Mathematics 2:
The aim of this course is to give the student sound mathematical basis in calculus of one or several variables and optimization in a way appropriate for a student of bioinformatics. An emphasis is given to applications and intuitive understanding of the underlying concepts. The second semester (Principles of Mathematics 2) will be devoted mainly to the study of functions of several variables, linear algebra, and differential equations. Basic optimization results for functions of several variables will also be considered.
Knowledge and understanding
The aim of the course is to give students a basic
understanding of calculus in a way appropriate to bioinformatics students. Students will also be exposed to mathematics proofs as an example of rigorous scientific reasoning.
Applying knowledge and understanding
By the end of the course, students will be able to use basic mathematical tools as applied to different environments. They will also be able to interpret in a critical way
results obtained by applying mathematical modelling technique.
Making judgements
Lectures and practical exercises will provide students with the basic ability in
assessing the main strengths and weaknesses of mathematical models when used to explain empirical evidence.
Communication
By the end of the course, students will have basic mathematical skills that will help them to talk in an appropriate way about quantitative models.
Lifelong learning skills
Students are expected to develop learning skills necessary to undertake additional and more advanced studies involving mathematics and mathematical modelling in biology.
|
6
|
MAT/09
|
24
|
36
|
-
|
-
|
Attività formative di base
|
ENG |
1049372 -
ORGANIC AND INORGANIC CHEMISTRY
(obiettivi)
This course is an introduction to chemistry fundamentals addressed to students with limited chemistry background. The purpose of the course is to provide students with the knowledge of general chemistry principles, and with the tools to solve simple chemistry problems. At the end of the course the students are expected to know ho to apply the acquired chemical concepts to different fields, including pharmaceutical chemistry and biochemistry which are the subjects of further courses. The course aims to provide a correct knowledge of the fundamental principles of organic chemistry, proposing the contents into two distinct phases that are closely and logically linked. In the first phase the teaching is addressed to provide basic knowledge about classification and nomenclature of organic compounds, about the symbolism used to represent both structures and reactions, as well as over the chemical-physics, acid-base, nucleophilic-electrophilic properties of the considered compounds. In the second phase the teaching is instead focused on the description of the different reactivity involved by different classes of compounds, rationalizing the study through the analysis of the relevant mechanisms. In the context of the described methodology the objectives to be achieved are: 1) attainment of a suitable degree of specialized knowledge, understood as the ability to invoke theories, rules, nomenclature etc.; 2) capacity to properly interpret and process the reaction schemes and propose alternatives to the encountered syntheses; 3) establish connections between different studied subjects.
|
|
-
ORGANIC AND INORGANIC CHEMISTRY 2
|
Erogato in altro semestre o anno
|
-
ORGANIC AND INORGANIC CHEMISTRY 1
(obiettivi)
This course is an introduction to chemistry fundamentals addressed to students with limited chemistry background. The purpose of the course is to provide students with the knowledge of general chemistry principles, and with the tools to solve simple chemistry problems. At the end of the course the students are expected to know ho to apply the acquired chemical concepts to different fields, including pharmaceutical chemistry and biochemistry which are the subjects of further courses.
|
6
|
CHIM/03
|
48
|
-
|
-
|
-
|
Attività formative di base
|
ENG |
1049253 -
PRINCIPLES OF COMPUTER SCIENCE I
(obiettivi)
The goal of this course is to teach students the basic programming skills needed to deal with bioinformatics data. At the end of the course the students will be able to: - model problems of medium difficulty and solve them by programming; - decompose complex programming problems into simpler problems; - design and implement programs; - test programs; - analyze programs in terms of their correctness and efficiency; - use Python and its libraries.
|
6
|
INF/01
|
24
|
36
|
-
|
-
|
Attività formative di base
|
ENG |
1049373 -
BIOLOGY OF THE CELL
(obiettivi)
Students acquire the knowledge and thinking skills necessary to understand biological problems in a evolutionary perspective. The course will provide students with understanding of the basic molecular mechanisms that operate in living cells, with a focus on the flow of genetic information.
|
|
-
BIOLOGY OF THE CELL 2
|
Erogato in altro semestre o anno
|
-
BIOLOGY OF THE CELL 1
(obiettivi)
Students acquire the knowledge and thinking skills necessary to understand biological problems in a evolutionary perspective. The course will provide students with understanding of the basic molecular mechanisms that operate in living cells, with a focus on the flow of genetic information.
|
6
|
BIO/13
|
40
|
-
|
12
|
-
|
Attività formative caratterizzanti
|
ENG |
10596081 -
PRINCIPLES OF PHYSICS
(obiettivi)
1) Knowledge and understanding The course of "Principle of Physics" provides knowledge of the fundamental laws of classical physics. The course will emphasise on mechanics with elements of biophysics and fluids, and importantly the cardiovascular system. Basic terms and general knowledge of fundamental physics, in magnetism, electricity and wave and radiation interaction will be as well covered.
2) Applying knowledge and understanding The student will learn how to use the scientific method up to the modelling required to solve simple problems related to the knowledge acquired during the course.
3) Making judgements At the end of the course, the students will develop quantitative reasoning abilities and problem-solving skills, which represents the basis to study, model, and understand the world from the Physics point of view.
4) Communication skills The student will learn how to develop and communicate the knowledge acquired during the course by: - interaction with the teacher during office hours - course tests and expontaneous quiz.
These targets are fundamental and will be acquired by regular exercises of variable degree that are encompassed within a highly modular and comprehensive lecture on Principle of Physics.
|
6
|
FIS/03
|
48
|
-
|
-
|
-
|
Attività formative di base
|
ENG |
Secondo semestre
Insegnamento
|
CFU
|
SSD
|
Ore Lezione
|
Ore Eserc.
|
Ore Lab
|
Ore Studio
|
Attività
|
Lingua
|
1049371 -
PRINCIPLES OF MATHEMATICS
(obiettivi)
Principles of mathematics 1: The aim of this course is to give the student sound mathematical basis in calculus of one or several variables and optimization in a way appropriate for a student of bioinformatics. An emphasis is given to applications and intuitive understanding of the underlying concepts. The first semester (Principles of Mathematics 1) will be devoted mainly to the study of functions of one variables, including limits, derivative and integrals. Basic optimisation results for functions of one variable will also be considered
Knowledge and understanding
The aim of the course is to give students a basic
understanding of calculus in a way appropriate to bioinformatics students. Students will also be exposed to mathematics proofs as an example of rigorous scientific reasoning.
Applying knowledge and understanding
By the end of the course, students will be able to use basic mathematical tools as applied to different environments. They will also be able to interpret in a critical way
results obtained by applying mathematical modelling technique.
Making judgements
Lectures and practical exercises will provide students with the basic ability in
assessing the main strengths and weaknesses of mathematical models when used to explain empirical evidence.
Communication
By the end of the course, students will have basic mathematical skills that will help them to talk in an appropriate way about quantitative models.
Lifelong learning skills
Students are expected to develop learning skills necessary to undertake additional and more advanced studies involving mathematics and mathematical modelling in biology.
Principles of Mathematics 2:
The aim of this course is to give the student sound mathematical basis in calculus of one or several variables and optimization in a way appropriate for a student of bioinformatics. An emphasis is given to applications and intuitive understanding of the underlying concepts. The second semester (Principles of Mathematics 2) will be devoted mainly to the study of functions of several variables, linear algebra, and differential equations. Basic optimization results for functions of several variables will also be considered.
Knowledge and understanding
The aim of the course is to give students a basic
understanding of calculus in a way appropriate to bioinformatics students. Students will also be exposed to mathematics proofs as an example of rigorous scientific reasoning.
Applying knowledge and understanding
By the end of the course, students will be able to use basic mathematical tools as applied to different environments. They will also be able to interpret in a critical way
results obtained by applying mathematical modelling technique.
Making judgements
Lectures and practical exercises will provide students with the basic ability in
assessing the main strengths and weaknesses of mathematical models when used to explain empirical evidence.
Communication
By the end of the course, students will have basic mathematical skills that will help them to talk in an appropriate way about quantitative models.
Lifelong learning skills
Students are expected to develop learning skills necessary to undertake additional and more advanced studies involving mathematics and mathematical modelling in biology.
|
|
-
PRINCIPLES OF MATHEMATICS 2
(obiettivi)
Principles of mathematics 1: The aim of this course is to give the student sound mathematical basis in calculus of one or several variables and optimization in a way appropriate for a student of bioinformatics. An emphasis is given to applications and intuitive understanding of the underlying concepts. The first semester (Principles of Mathematics 1) will be devoted mainly to the study of functions of one variables, including limits, derivative and integrals. Basic optimisation results for functions of one variable will also be considered
Knowledge and understanding
The aim of the course is to give students a basic
understanding of calculus in a way appropriate to bioinformatics students. Students will also be exposed to mathematics proofs as an example of rigorous scientific reasoning.
Applying knowledge and understanding
By the end of the course, students will be able to use basic mathematical tools as applied to different environments. They will also be able to interpret in a critical way
results obtained by applying mathematical modelling technique.
Making judgements
Lectures and practical exercises will provide students with the basic ability in
assessing the main strengths and weaknesses of mathematical models when used to explain empirical evidence.
Communication
By the end of the course, students will have basic mathematical skills that will help them to talk in an appropriate way about quantitative models.
Lifelong learning skills
Students are expected to develop learning skills necessary to undertake additional and more advanced studies involving mathematics and mathematical modelling in biology.
Principles of Mathematics 2:
The aim of this course is to give the student sound mathematical basis in calculus of one or several variables and optimization in a way appropriate for a student of bioinformatics. An emphasis is given to applications and intuitive understanding of the underlying concepts. The second semester (Principles of Mathematics 2) will be devoted mainly to the study of functions of several variables, linear algebra, and differential equations. Basic optimization results for functions of several variables will also be considered.
Knowledge and understanding
The aim of the course is to give students a basic
understanding of calculus in a way appropriate to bioinformatics students. Students will also be exposed to mathematics proofs as an example of rigorous scientific reasoning.
Applying knowledge and understanding
By the end of the course, students will be able to use basic mathematical tools as applied to different environments. They will also be able to interpret in a critical way
results obtained by applying mathematical modelling technique.
Making judgements
Lectures and practical exercises will provide students with the basic ability in
assessing the main strengths and weaknesses of mathematical models when used to explain empirical evidence.
Communication
By the end of the course, students will have basic mathematical skills that will help them to talk in an appropriate way about quantitative models.
Lifelong learning skills
Students are expected to develop learning skills necessary to undertake additional and more advanced studies involving mathematics and mathematical modelling in biology.
|
6
|
MAT/09
|
48
|
-
|
-
|
-
|
Attività formative di base
|
ENG |
-
PRINCIPLES OF MATHEMATICS 1
|
Erogato in altro semestre o anno
|
1049372 -
ORGANIC AND INORGANIC CHEMISTRY
(obiettivi)
This course is an introduction to chemistry fundamentals addressed to students with limited chemistry background. The purpose of the course is to provide students with the knowledge of general chemistry principles, and with the tools to solve simple chemistry problems. At the end of the course the students are expected to know ho to apply the acquired chemical concepts to different fields, including pharmaceutical chemistry and biochemistry which are the subjects of further courses. The course aims to provide a correct knowledge of the fundamental principles of organic chemistry, proposing the contents into two distinct phases that are closely and logically linked. In the first phase the teaching is addressed to provide basic knowledge about classification and nomenclature of organic compounds, about the symbolism used to represent both structures and reactions, as well as over the chemical-physics, acid-base, nucleophilic-electrophilic properties of the considered compounds. In the second phase the teaching is instead focused on the description of the different reactivity involved by different classes of compounds, rationalizing the study through the analysis of the relevant mechanisms. In the context of the described methodology the objectives to be achieved are: 1) attainment of a suitable degree of specialized knowledge, understood as the ability to invoke theories, rules, nomenclature etc.; 2) capacity to properly interpret and process the reaction schemes and propose alternatives to the encountered syntheses; 3) establish connections between different studied subjects.
|
|
-
ORGANIC AND INORGANIC CHEMISTRY 2
(obiettivi)
The course aims to provide a correct knowledge of the fundamental principles of organic chemistry, proposing the contents into two distinct phases that are closely and logically linked. In the first phase the teaching is addressed to provide basic knowledge about classification and nomenclature of organic compounds, about the symbolism used to represent both structures and reactions, as well as over the chemical-physics, acid-base, nucleophilic-electrophilic properties of the considered compounds. In the second phase the teaching is instead focused on the description of the different reactivity involved by different classes of compounds, rationalizing the study through the analysis of the relevant mechanisms. In the context of the described methodology the objectives to be achieved are: 1) attainment of a suitable degree of specialized knowledge, understood as the ability to invoke theories, rules, nomenclature etc.; 2) capacity to properly interpret and process the reaction schemes and propose alternatives to the encountered syntheses; 3) establish connections between different studied subjects.
|
6
|
CHIM/06
|
48
|
-
|
-
|
-
|
Attività formative di base
|
ENG |
-
ORGANIC AND INORGANIC CHEMISTRY 1
|
Erogato in altro semestre o anno
|
1049376 -
INTRODUCTION TO BIOMEDICAL STATISTICS
(obiettivi)
The course has the objective to deepen the practical understanding of the use of probability and statistics in the context of epidemiology and genetics and other biomedical applications.
|
|
-
INTRODUCTION TO BIOMEDICAL STATISTICS 1
(obiettivi)
Obiettivi formativi Obiettivo formativo dell’insegnamento è l'apprendimento da parte degli studenti dei fondamenti del calcolo delle probabilità e della statistica.
Conoscenza e capacità di comprensione Alla fine del corso gli studenti conoscono e comprendono come formalizzare l’incertezza, descrivere quantitativamente le caratteristiche di una popolazione e come fare inferenza su parametri non noti.
Capacità di applicare conoscenza e comprensione Gli studenti apprendono come impostare un problema di probabilità o statistica.
Autonomia di giudizio La discussione dei vari metodi fornisce agli studenti le capacità necessarie per analizzare criticamente, ed in autonomia, situazioni reali.
Abilità comunicativa Gli studenti acquisiscono gli elementi di base per ragionare, e far ragionare, in termini quantitativi su problemi di incertezza e statistica.
Capacità di apprendimento Gli studenti che superano l’esame sono in grado di applicare i metodi appresi in diversi contesti applicativi.
|
6
|
SECS-S/01
|
48
|
-
|
-
|
-
|
Attività formative di base
|
ENG |
-
INTRODUCTION TO BIOMEDICAL STATISTICS 2
(obiettivi)
The course has the objective to deepen the practical understanding of the use of probability and statistics in the context of epidemiology and genetics and other biomedical applications.
|
6
|
MED/01
|
48
|
-
|
-
|
-
|
Attività formative di base
|
ENG |
1049373 -
BIOLOGY OF THE CELL
(obiettivi)
Students acquire the knowledge and thinking skills necessary to understand biological problems in a evolutionary perspective. The course will provide students with understanding of the basic molecular mechanisms that operate in living cells, with a focus on the flow of genetic information.
|
|
-
BIOLOGY OF THE CELL 2
(obiettivi)
Students acquire the knowledge and thinking skills necessary to understand biological problems in a evolutionary perspective. The course will provide students with understanding of the basic molecular mechanisms that operate in living cells, with a focus on the flow of genetic information.
|
6
|
BIO/13
|
48
|
-
|
-
|
-
|
Attività formative caratterizzanti
|
ENG |
-
BIOLOGY OF THE CELL 1
|
Erogato in altro semestre o anno
|
Secondo anno
Primo semestre
Insegnamento
|
CFU
|
SSD
|
Ore Lezione
|
Ore Eserc.
|
Ore Lab
|
Ore Studio
|
Attività
|
Lingua
|
1052115 -
GENETICS AND COMPUTATIONAL GENOMICS
(obiettivi)
General skills The course of Genetics and computational genomics provides students with a basic knowledge of Genetics aimed at understanding the rules of inheritance, their molecular bases, their main applications and their implications for evolution. In addition, the course will allow students to understand how genetic information is encoded at the DNA level and how it contribute to phenotypic variability. Fundamentals concepts in functional genetics and evolution will be reconsidered in light of the sequencing and re-sequencing projects. The student will be also provided of practical and theoretical tools to solve genetic problems and to use databases for storage, management, analysis, and visualization of genetic data.
Specific skills
A) Knowledge and understanding -Knowledge and understanding of the characteristics of the genetic material -Knowledge and understanding of the rules of genetic transmission -Knowledge and understanding of mutations and their implications -Basic knowledge on the dynamics of genes in populations as well as on the genetic mechanisms underlying evolution - Knowledge and understanding of informatic methods used for genomic analyses
B) Applying knowledge and understanding - Usage of a proper genetic terminology - Identification of the right procedures to solve genetic problems - Formulation of hypotheses on the hereditary transmission of characters - Constructing and interpreting genetic maps and genealogical trees - Acquisition of conceptual tools for the genetic dissection of biological systems - Management of genomic browsers and programs for storage, management analysis, and visualization of “big data”
C) Making judgements - Acquisition of a critical judgment capacity on solving problems of formal genetics, through the study of the evolution of the gene concept from Mendel to the present day and the detailed analysis of some fundamental experiments - Addressing questions for the elaboration and deepening of the gained information
D) Communication skills - Communicating the genetic concepts acquired during the course with appropriate terminology
E) Learning skills - Logically connecting the acquired knowledge - Identification of the most relevant topics of the issues discussed during the course
|
6
|
BIO/18
|
48
|
-
|
-
|
-
|
Attività formative caratterizzanti
|
ENG |
1049261 -
PRINCIPLES OF COMPUTER SCIENCE II
(obiettivi)
The course aim to introduce the algorithmic approach to solving problems correctly and efficiently. Algorithms are ubiquitous in bioinformatics and are often at the interface of computer science and biology. Well established algorithmic techniques will be studied as well as ways to encode them in a computer programme using python.
|
6
|
ING-INF/05
|
48
|
-
|
-
|
-
|
Attività formative affini ed integrative
|
ENG |
1049256 -
MICROBIOLOGY
(obiettivi)
Microorganisms play a key role in the environment, in human health and in biotechnological research. The course of Microbiology aims to provide the basic principles of structure, function and evolution of microbial cells, with particular regard to bacterial cells. The knowledge and skills acquired during this course will represent a framework for the study of bioinformatics and biotechnological applications of microorganisms, and for the analysis of their impact on human health and the environment.
Students who have passed the exam will know and understand (acquired knowledge)
- The structural and functional diversity which is present in the microbial world; - The mechanisms responsible for the structure and functioning of bacterial cells; - The mechanisms responsible for the evolution of bacterial species; - The structure and life cycles of viruses; - The methods and strategies for the control of microbial growth.
Students who have passed the exam will be able to (acquired skills): - Understand and analyse microbiological data; - Critically analyze the issues related to the evolution and diffusion of multi-resistant antibiotic bacteria; - Understand and design experimental and bioinformatics approaches for the study and exploitation of bacteria for biotechnological and environmental purposes; - Identify and develop key themes to build educational paths in microbiology.
|
6
|
BIO/19
|
40
|
-
|
12
|
-
|
Attività formative caratterizzanti
|
ENG |
1049375 -
MOLECULAR BIOLOGY
(obiettivi)
General goals The course aims to introduce the students to the links between DNA, RNA and protein structure and their relevant biological functions with particular emphasis on the bioinformatic approaches to their analysis.
Specific goals 1. Knowledge and comprehension: the students will have to know the molecular mechanisms which regulate cellular homeostasis and gene expression and the most utilized methodologies in Molecular Biology. 2. Ability in applying Knowledge and comprehension: the students will have to be able to apply this knowledge in the discussion of specific arguments of recent and general interest with a particular focus on the bioinformatic approaches. 3. Abilities in judging methodologic approaches and communication skill: The students will have to show skills in judging strategies in biological problems solving and to communicate their conclusions to the teacher and to the colleagues. This is also applicable to the practical training sessions. 4. The students will have to show skill in applying what they have learned in molecular biology to specific problems to be solved with a bioinformatic approach.
|
|
-
MOLECULAR BIOLOGY 2
|
Erogato in altro semestre o anno
|
-
MOLECULAR BIOLOGY 1
(obiettivi)
General goals The course aims to introduce the students to the links between DNA, RNA and protein structure and their relevant biological functions with particular emphasis on the bioinformatic approaches to their analysis.
Specific goals 1. Knowledge and comprehension: the students will have to know the molecular mechanisms which regulate cellular homeostasis and gene expression and the most utilized methodologies in Molecular Biology. 2. Ability in applying Knowledge and comprehension: the students will have to be able to apply this knowledge in the discussion of specific arguments of recent and general interest with a particular focus on the bioinformatic approaches. 3. Abilities in judging methodologic approaches and communication skill: The students will have to show skills in judging strategies in biological problems solving and to communicate their conclusions to the teacher and to the colleagues. This is also applicable to the practical training sessions. 4. The students will have to show skill in applying what they have learned in molecular biology to specific problems to be solved with a bioinformatic approach.
|
6
|
BIO/11
|
48
|
-
|
-
|
-
|
Attività formative di base
|
ENG |
1049377 -
BIOCHEMISTRY
(obiettivi)
Educational aims i.e what is the purpose of the course and general statements about the learning that takes place over the duration of the course
1. To give students a good understanding of the major areas of Biochemistry 2. To develop students’ understanding of the application of biochemical principles to other areas of biology and biomedical sciences 3. To develop students’ awareness of the role of Biochemistry both as a research discipline and its applications 4. Develop the key skills required for independent evaluation of data, critical appraisal of scientific literature. 5. Develop confidence in oral presentation skills to specialized audiences, and the ability to write scientific reports.
Knowledge and understanding
The course provides a knowledge and understanding of the following: 1. Key concepts in areas of direct relevance to biochemistry 2. Structure and function of proteins 3. Key concepts in enzymology, metabolic pathways and their regulation 4. Mechanisms of enzymatic reactions, Michaelis-Menten kinetics. The most important metabolic pathways of carbohydrates, lipids, fatty acids and amino acids and connections between the metabolic pathways 5. Relevance of the knowledge of enzymic mechanisms, the metabolic pathways for research in metabolomics applied to human health issues and to pharmaceutical chemistry. 6. 7. Role of hormones in cellular communications and signal transduction 8. Theoretical basis of key biochemical and immunological practical techniques 9. Theoretical basis of the determination of protein structure 10. Basis of bioinformatics and sequence/structure analysis 11. Awareness of major issues currently at the forefront of Biochemistry research
Teaching/learning methods and strategies
The above mentioned points are achieved through lectures, group work and formative assessments, and are reviewed and reinforced in tutorials.
Intellectual/Communication skills and Judgements
1. Interpret and analyze biochemical data with a critical understanding of the appropriate contexts for their use 2. Integrate subject knowledge and understanding to explore and solve familiar and unfamiliar problems 3. Understand Biochemistry literature 4. Produce critical and original pieces of written work on biochemical topics 5. Think critically about their own work/research and to input into the formulation of future hypotheses and experiments 7. Ability to present Biochemistry to audiences of differing scientific knowledge 8. Computer skills, to include molecular viewers, data analysis/presentation, spreadsheets and statistical analysis.
|
|
-
BIOCHEMISTRY 2
|
Erogato in altro semestre o anno
|
-
BIOCHEMISTRY 1
(obiettivi)
KNOWLEDGE AND UNDERSTANDING The students will acquire the knowledge necessary for the understanding of the structures and functions of the living matter in molecular terms. Structures and functions of proteins, lipids, phospholipids. Structure-function relationship of protein and folding. Fibrous and globular proteins. Antibodies and their applications in analytical biochemistry. Importance of kinetics and thermodynamics in biochemistry. Biological membranes and transport systems. Mechanisms of enzymic reactions, Michaelis-Menten kinetics. The most important metabolic pathways of carbohydrates, lipids, fatty acids and amino acids. Mechanisms of regulation of metabolic pathways, production and conservation of energy. Connections between the metabolic pathways. Some aspects of the forefront research in biochemistry and, in particular, in metabolomic research, will also be illustrated, supported by advanced textbooks and scientific articles.
APPLYING KNOWLEDGE AND UNDERSTANDING
The students will gain an insight into the relevance of the knowledge of biochemistry for pharmaceutical chemistry, biotechnology and, in particular, metabolomic research applied to human health. The knowledge acquired during the lectures will be consolidated by exercises regarding the single topics. Also, examples of problems which can be solved only by applying the knowledge on the enzymic mechanisms, metabolic pathways and their connections, will be proposed. The students will be encouraged to tackle the problems and to put forward the ideas on the possible solutions. The importance of the constant updating on the progress in the research will also be highlighted. MAKING JUDGEMENTS The knowledge and the understanding of the single topics will be consolidated through discussions regarding the conceptual and methodological approaches used in the studies on the metabolic reactions and on the connections among the metabolic pathways. The students will be encouraged to apply the acquired knowledge to new problems. The discussions on the topics regarding the programme, presented in an interdisciplinary framework, together with the acquired knowledge, will help to develop the ability to make autonomous judgements, to gather and interpret relevant data regarding issues in biochemistry. In particular, examples of metabolomic research will be presented and the students will be encouraged to tackle the problems and put forward the ideas on the possible solutions.
COMMUNICATION
The knowledge of the biochemical bases of biological processes oriented towards applications in medicine and pharmaceutical research and framed in an interdisciplinary context, as well as the correct use of the biochemical terminology, contributes to develop the ability to communicate with specialist and nonspecialist interlocutors.
LEARNING SKILLS
The knowledge of the fundamentals of biochemistry and the ability to interpret the data, as well as the insight gained into the strategies of biochemical research, will enable the students to develop those skills needed to undertake further studies requiring a higher level of autonomy, such as the Master degree
|
6
|
BIO/10
|
40
|
12
|
-
|
-
|
Attività formative caratterizzanti
|
ENG |
Secondo semestre
Insegnamento
|
CFU
|
SSD
|
Ore Lezione
|
Ore Eserc.
|
Ore Lab
|
Ore Studio
|
Attività
|
Lingua
|
1049260 -
IMMUNOLOGY AND MOLECULAR PATHOLOGIES
(obiettivi)
Learning results This course is aimed at providing an overview of the most important cellular and molecular mechanisms involved in the regulation of the immune response. The factors regulating immune system will be put in relation to the molecular mechanisms governing resistance against pathogens and promoting pathologies related to a defective immune response. Specific aims Student will acquire fundamental knowledge on - how immune cells function and interplay to participate to immune responses - how immune system protects us from pathogens and how mechanisms that inhibit immune responses lead to disease state. - how interpretation of transcriptomic and proteomic data helps to elucidate mechanisms of development of the immune response. At the end of the course, students will be able to explain how immune system works and to understand and explain data obtained from multiparametric analysis of immune cell function at transcriptional and post-transcriptional levels. The use of bioinformatics tools to clarify the molecular processes underlying pathologies and their use in diagnosis and treatment of diseases will be discussed. At the end of the course, students will be able to perform bibliographic searches in public scientific data banks (i.e. PubMed) to develop the topics covered in the course. This will be instrumental to identify the most recent methods of bioinformatic analysis used to approach immunology issues. The independent ability of the student to propose solutions to solve immunological questions is and aim of the course. Communication skills will be verified during the course by stimulating discussion and implemented by suggestions and the critical analysis of the slides presented during the course
|
6
|
MED/04
|
48
|
-
|
-
|
-
|
Attività formative caratterizzanti
|
ENG |
1049375 -
MOLECULAR BIOLOGY
(obiettivi)
General goals The course aims to introduce the students to the links between DNA, RNA and protein structure and their relevant biological functions with particular emphasis on the bioinformatic approaches to their analysis.
Specific goals 1. Knowledge and comprehension: the students will have to know the molecular mechanisms which regulate cellular homeostasis and gene expression and the most utilized methodologies in Molecular Biology. 2. Ability in applying Knowledge and comprehension: the students will have to be able to apply this knowledge in the discussion of specific arguments of recent and general interest with a particular focus on the bioinformatic approaches. 3. Abilities in judging methodologic approaches and communication skill: The students will have to show skills in judging strategies in biological problems solving and to communicate their conclusions to the teacher and to the colleagues. This is also applicable to the practical training sessions. 4. The students will have to show skill in applying what they have learned in molecular biology to specific problems to be solved with a bioinformatic approach.
|
|
-
MOLECULAR BIOLOGY 2
(obiettivi)
General goals The course aims to introduce the students to the links between DNA, RNA and protein structure and their relevant biological functions with particular emphasis on the bioinformatic approaches to their analysis. Specific goals: 1. Knowledge and comprehension: the students will have to know the molecular mechanisms which regulate cellular homeostasis and gene expression and the most utilized methodologies in Molecular Biology. 2. Ability in applying Knowledge and comprehension: the students will have to be able to apply this knowledge in the discussion of specific arguments of recent and general interest with a particular focus on the bioinformatic approaches. 3. Abilities in judging methodologic approaches and communication skill: The students will have to show skills in judging strategies in biological problems solving and to communicate their conclusions to the teacher and to the colleagues. This is also applicable to the practical training sessions. 4. The students will have to show skill in applying what they have learned in molecular biology to specific problems to be solved with a bioinformatic approach.
|
6
|
BIO/11
|
32
|
-
|
24
|
-
|
Attività formative di base
|
ENG |
-
MOLECULAR BIOLOGY 1
|
Erogato in altro semestre o anno
|
1049377 -
BIOCHEMISTRY
(obiettivi)
Educational aims i.e what is the purpose of the course and general statements about the learning that takes place over the duration of the course
1. To give students a good understanding of the major areas of Biochemistry 2. To develop students’ understanding of the application of biochemical principles to other areas of biology and biomedical sciences 3. To develop students’ awareness of the role of Biochemistry both as a research discipline and its applications 4. Develop the key skills required for independent evaluation of data, critical appraisal of scientific literature. 5. Develop confidence in oral presentation skills to specialized audiences, and the ability to write scientific reports.
Knowledge and understanding
The course provides a knowledge and understanding of the following: 1. Key concepts in areas of direct relevance to biochemistry 2. Structure and function of proteins 3. Key concepts in enzymology, metabolic pathways and their regulation 4. Mechanisms of enzymatic reactions, Michaelis-Menten kinetics. The most important metabolic pathways of carbohydrates, lipids, fatty acids and amino acids and connections between the metabolic pathways 5. Relevance of the knowledge of enzymic mechanisms, the metabolic pathways for research in metabolomics applied to human health issues and to pharmaceutical chemistry. 6. 7. Role of hormones in cellular communications and signal transduction 8. Theoretical basis of key biochemical and immunological practical techniques 9. Theoretical basis of the determination of protein structure 10. Basis of bioinformatics and sequence/structure analysis 11. Awareness of major issues currently at the forefront of Biochemistry research
Teaching/learning methods and strategies
The above mentioned points are achieved through lectures, group work and formative assessments, and are reviewed and reinforced in tutorials.
Intellectual/Communication skills and Judgements
1. Interpret and analyze biochemical data with a critical understanding of the appropriate contexts for their use 2. Integrate subject knowledge and understanding to explore and solve familiar and unfamiliar problems 3. Understand Biochemistry literature 4. Produce critical and original pieces of written work on biochemical topics 5. Think critically about their own work/research and to input into the formulation of future hypotheses and experiments 7. Ability to present Biochemistry to audiences of differing scientific knowledge 8. Computer skills, to include molecular viewers, data analysis/presentation, spreadsheets and statistical analysis.
|
|
-
BIOCHEMISTRY 2
(obiettivi)
Educational aims i.e what is the purpose of the course and general statements about the learning that takes place over the duration of the course
1. To give students a good understanding of the major areas of Biochemistry 2. To develop students’ understanding of the application of biochemical principles to other areas of biology and biomedical sciences 3. To develop students’ awareness of the role of Biochemistry both as a research discipline and its applications 4. Develop the key skills required for independent evaluation of data, critical appraisal of scientific literature. 5. Develop confidence in oral presentation skills to specialized audiences, and the ability to write scientific reports.
Knowledge and understanding
The course provides a knowledge and understanding of the following: 1. Key concepts in areas of direct relevance to biochemistry 2. Structure and function of proteins 3. Key concepts in enzymology, metabolic pathways and their regulation 4. Mechanisms of enzymatic reactions, Michaelis-Menten kinetics. The most important metabolic pathways of carbohydrates, lipids, fatty acids and amino acids and connections between the metabolic pathways 5. Relevance of the knowledge of enzymic mechanisms, the metabolic pathways for research in metabolomics applied to human health issues and to pharmaceutical chemistry. 6. 7. Role of hormones in cellular communications and signal transduction 8. Theoretical basis of key biochemical and immunological practical techniques 9. Theoretical basis of the determination of protein structure 10. Basis of bioinformatics and sequence/structure analysis 11. Awareness of major issues currently at the forefront of Biochemistry research
Teaching/learning methods and strategies
The above mentioned points are achieved through lectures, group work and formative assessments, and are reviewed and reinforced in tutorials.
Intellectual/Communication skills and Judgements
1. Interpret and analyze biochemical data with a critical understanding of the appropriate contexts for their use 2. Integrate subject knowledge and understanding to explore and solve familiar and unfamiliar problems 3. Understand Biochemistry literature 4. Produce critical and original pieces of written work on biochemical topics 5. Think critically about their own work/research and to input into the formulation of future hypotheses and experiments 7. Ability to present Biochemistry to audiences of differing scientific knowledge 8. Computer skills, to include molecular viewers, data analysis/presentation, spreadsheets and statistical analysis.
|
6
|
BIO/10
|
40
|
-
|
12
|
-
|
Attività formative caratterizzanti
|
ENG |
-
BIOCHEMISTRY 1
|
Erogato in altro semestre o anno
|
1049264 -
PHARMACEUTICAL CHEMISTRY
(obiettivi)
During the course the student will learn the basics to design a drug through computational methods. The aim of the course is to impart an understanding of what medicinal chemists consider when attempting to design new pharmaceuticals. The course is twofold: a theoretical part and practical section. In the first part the course will describe the principles involved in modern drug design and drug discovery, usually with reference to compounds in current clinical usage. In the second part practical sections will be set up to teach the student some computational methods to apply in the drug design process.
|
6
|
CHIM/08
|
32
|
40
|
-
|
-
|
Attività formative caratterizzanti
|
ENG |
10592707 -
BIOINFORMATICS I
(obiettivi)
L'obiettivo del corso è fornire agli studenti un'introduzione alle tecniche pratiche e alle risorse disponibili sul web per la bioinformatica. Sarà data enfasi alla familiarizzazione degli studenti con l'applicazione di un'ampia varietà di strumenti bioinformatici e database biologici per svolgere attività di ricerca di base (compreso l'accesso ai principali database pubblici di sequenze, ricerca avanzata e recupero di set di dati di espressioni specifici, analisi di espressione differenziale, allineamento di sequenze proteiche) attraverso un ampio uso di tutorial e sessioni di allenamento pratico.
|
6
|
BIO/11
|
48
|
-
|
-
|
-
|
Attività formative affini ed integrative
|
ENG |
Terzo anno
Primo semestre
Insegnamento
|
CFU
|
SSD
|
Ore Lezione
|
Ore Eserc.
|
Ore Lab
|
Ore Studio
|
Attività
|
Lingua
|
1049266 -
BIOINFORMATICS II
(obiettivi)
This course offers an introduction to network medicine, a rapidly emerging field that integrates systems biology and network science. It runs counter to the prevailing scientific reductionist trend that dominates current medical research on disease etiology and treatment. Reductionism relies on single molecules or single genes to provide comprehensive and robust insights into the pathophysiology of complex diseases. Similarly, current drug development methodologies target single molecules that very frequently fail because of the unforeseen and unintended effects that result from the application of this piecemeal approach to pharmacology. In contrast, network medicine emphasizes a more holistic approach through the identification and investigation of networks of interacting molecular and cellular components. When network medicine is integrated into biomedical research, it has the potential to transform investigations of disease etiology, diagnosis, and treatment.
The course will explore the concept of network medicine through: (1) a review of the role, identification, and behavior of networks in biology and disease, (2) the integration of multiple types of -omics data into networks as a paradigm for understanding disease expression and course, and (3) systems pharmacology approaches for the development and evaluation of effective therapies of complex disease.
Moreover, this course will provide hands-on experience in the analysis of two specific types of biological networks—gene co-expression networks and drug-disease networks. During the course, attendees will apply the theory to real data sets. After completing the course, attendees should to be able to apply these methods in their own research.
The course goals are: Understand the role of networks in biology and disease. Understand networks as a paradigm for disease expression and course. Understand the challenges of developing effective therapies for complex diseases. Understand the role of omics data in networks. Understand network medicine in terms of investigation for disease etiology, diagnosis, and treatment.
|
6
|
ING-INF/06
|
24
|
-
|
36
|
-
|
Attività formative affini ed integrative
|
ENG |
1049265 -
BIOETHICS
(obiettivi)
The Bioethics course provides the students with tools to understand, discuss, present and address ethical issues relevant to bioinformatics, at the intersection between biological and technological sciences. In order to respond to the course requirements, the students will also acquire general skills such as doing a bibliographic research on academic databases, speaking and arguing in public by using specialized bioethical concepts and theories, and writing a little paper in an academic format including a bibliography.
|
6
|
MED/02
|
48
|
-
|
-
|
-
|
Attività formative caratterizzanti
|
ENG |
1049258 -
MOLECULAR BIOLOGY AND GENOMICS
(obiettivi)
General skills The new generation of sequencing technologies has provided unforeseen chances for high-throughput functional genomic studies. These technologies have been applied in a variety of contexts, including whole-genome sequencing, discovery of transcription factor binding sites, mapping out the DNA accessibility and RNA expression profiling. Intriguingly, recent annotation efforts focused on the discovery of novel noncoding RNA genes and regulatory elements that control temporal or spatial gene expression along cell differentiation. The course of Molecular Biology and Genomics is designed to provide students with an introduction to the structure and function of genomes and transcripts in humans and in other model organisms. Topics discussed will include modern genome sequencing technologies, as well the recent in silico and in vivo approaches used for functional genomics and for the functional role of emerging non-coding RNA classes (practical examples taken from recent literature will be used). The course also provides students with basic knowledge for accessing browsers and public databases for the analysis of gene expression data, GO and miRNA target prediction software. By the end of the course, students will be able to apply the acquired knowledge to the study of the basic mechanisms of gene expression, as well as of complex processes such as development, cell division and differentiation, and to exploit them for a practical use in both basic and applied research.
Specific skills The students who have passed the exam will be able to know and to understand (acquired knowledge)
- the origin and the maintenance of the biological complexity; - the structure and function of the genome in humans and in the main model systems; - the problems and technologies of genome-wide analyses applied to biological processes; - the influence of the modern sequencing technologies for a better description and for the study of transcriptome dynamics in humans and in the main model systems; - the network of interactions between the biological molecules in the mechanisms of regulation of gene expression.
The students who have passed the exam will be able to (acquired expertise): - interpret the biological phenomena in a multi-scale and multi-factorial context; - interpret the results of genomic studies and to discriminate which techniques to apply according to the different problems to be dealt with in the genomic field; - report works already present in the literature in the form of an oral presentation.
|
6
|
BIO/11
|
48
|
-
|
-
|
-
|
Attività formative caratterizzanti
|
ENG |
Gruppo opzionale:
Gruppo OPZIONALE - (visualizza)
|
12
|
|
|
|
|
|
|
|
10592651 -
COMPUTATIONAL SYSTEMS BIOLOGY
(obiettivi)
This course aims to provide students with a practical and hands-on experience with common modeling and simulation tools in molecular biology. It would be expected that after completing this course a student would be able to model and simulate using Matlab a biomolecular systems like, for example, a gene regulatory network using the appropriate methodology. Further, students will understand the basic theory behind these modeling tecniques and critically analyze the results of their analysis.
|
6
|
ING-INF/06
|
24
|
36
|
-
|
-
|
Attività formative affini ed integrative
|
ENG |
1049268 -
SIGNAL PROCESSING AND INFORMATION THEORY
|
Erogato in altro semestre o anno
|
1049269 -
ALGORITHMS
|
Erogato in altro semestre o anno
|
1049270 -
COMPLEX BIOMOLECULAR NETWORKS
(obiettivi)
The course aims to provide basics concepts and tools for complex networks analysis. The attendee will be able to apply complex networks concepts to biological networks and explore the underlying process and molecular related issues.
|
6
|
ING-INF/05
|
48
|
-
|
-
|
-
|
Attività formative affini ed integrative
|
ENG |
1049271 -
PLANT FUNCTIONAL GENOMICS
(obiettivi)
General skills
The course of Plant Functional Genomics aims to provide advanced knowledge of plant genomes, with particular attention to the use of this knowledge in order to identify new genes and determine their function.
Specific skills
A) Knowledge and understanding
To acquire detailed knowledge of: - methods of analysis of plant genomes and the peculiar difficulties related to these organisms (polyploidy, repetitive DNA); - the structure of the plant nuclear and plastidic genomes; - genome comparison methods, with particular attention to the identification of homologous, orthologue and paralogue genes; - methods of transfer of information on genes from model species to species of agricultural interest; - methods of integration of genomics and gene expression analysis data; - methods and approaches to study of the function of genes in model species and in crops, with approaches of direct and reverse genetics; - methods of transient and stable transformation; - identification and use of molecular markers in plant genetics; - use of genomic data to identify genes involved in agronomic traits. - the mechanisms of epigenetic regulation in plants and the methods to study them; - silencing and "genome editing" mechanisms in plant organisms;
B) Applying knowledge and understanding
- design experiments aimed at defining the function of a gene through reverse genetic approaches; - design genetic screening in plant model systems and outline the main lines of identification of a mutation; - understand and critically discuss the different approaches used to alter the expression of a gene in a plant and choose the most appropriate one according to the needs and the experimental model; - designing the engineering of new traits in plant organisms.
C) Making judgements
- Critical judgment skills, through the study of reviews and scientific articles on key aspects of the field and in-depth discussions; - Ability to evaluate the correctness and scientific rigor in the topics related to the topics covered by the course.
D) Communication skills
- Acquisition of adequate skills and useful tools for communication in Italian and in foreign languages (English), through the use of graphic and formal languages, with particular regard to the scientific language.
E) Learning skills - Ability to interpret and deepen knowledge; - Ability to use cognitive tools for continuous updating of knowledge; - Ability to compare for the consolidation and improvement of knowledge.
|
6
|
BIO/04
|
48
|
-
|
-
|
-
|
Attività formative affini ed integrative
|
ENG |
1049272 -
PRINCIPLES OF GENERAL PATHOLOGY
(obiettivi)
OVERALL OBJECTIVES: The general aim of this course is to give to the student the basic knowledge concerning: 1) the fundamental molecular mechanisms that regulate human disease processes; 2) how recent biotechnological advances and next generation sequencing approaches can be integrated in the characterization of the pathologies; 3) the different types of genetically modified murine models for the study and the cure of human pathologies; 4) the main bioinformatic tools in this field.
SPECIFIC OBJECTIVES: At the end of the course the student will be able, by applying the knowledge acquired during the course: 1) perform bibliographic searches on international databases; 2) perform data mining on most widely used databases 3) integrate notions acquired during lectures and international scientific literature; 4) understand the principal mechanisms of most common pathologies and how these can be studied with the aid of next generation sequencing approach; 4) to hypothesize the generation of animal models for the pathophysiological study of human diseases and for the identification of therapeutic targets; 5) to critically evaluate the best bioinformatic tools for achieving these results or alternatively, to pursue the replacement of animal experimentation.
KNOWLEDGE AND UNDERSTANDING: At the end of the course the student woud be able to know: Concept and causes of alteration in the cell, from homeostasis to disease; Next generation Sequencing (NGS) technique used for different applications, from the study of genomes, chromatin accessibility and trascriptome; Molecular and cellular pathology of cancer; Pathogenetic mechanisms of non-coding RNAs; Stem cells: embryonic stem cells, tissue stem cells and cancer stem cells; advantages and limits of genetically modified murine models; the basic technical and bioinformatic tools concerning the generation, the characterization and the maintenance of murine colonies; the specific traits of the different types of genetically modified murine models, both conventional and conditional; the bioinformatic tools to potentially validate mouse models of human diseases.
APPLYING KNOWLEDGE AND UNDERSTANDING: To apply the acquired knowledge to integrate information gathered from different sources (datasets, material obtained during lectures, and scientific literature); to understand different mechanisms that contribute to pathogenesis and how these mechanisms can be studied, with particular focus on NGS-based technologies; to discriminate advantages and limits in generating and using different types of genetically modified murine models for the study and the cure of human pathologies; to critically evaluate the bioinformatic means available to pursue these aims.
MAKING JUDGEMENTS: The student will be able to link the different types of notions acquired during the course to elaborate the most appropriate experimental strategy based on bioinformatic tools and able to solve research problems in the field of general pathology.
COMMUNICATION: The student will be able to perform oral presentation of scientific data, with the aid of Power Point software. Notions acquired during the course will be evaluated during the exam.
LIFELONG LEARNING SKILLS: The notions, the tools and the notes available during the course will contribute in developing the competence for the autonomous study and continuous updating in the field of the Bioinformatics applied to the general pathology.
|
6
|
MED/46
|
48
|
-
|
-
|
-
|
Attività formative affini ed integrative
|
ENG |
1049273 -
OPTIMIZATION METHODS FOR COMPUTATIONAL BIOLOGY
(obiettivi)
The course gives an introduction on the basic tools for mathematical modeling and solving decision and optimization problems that arise in bioinformatics. At the end of the course, students should be able to recognize such problems, build mathematical models for them, and solve them using a number of modeling techniques and solution algorithms, also by means of specific software tools.
Expected learning outcomes (Dublin Descriptors):
1. Understand all basic mathematical aspects of solving linear, linear integer, and nonlinear convex optimization problems. Understand main modeling techniques in mathematical programming.
2. Be able to develop an optimization model from a decision problem with quantitative data. Be able to select and use suitable software to solve such model.
3. Be able to identify weaknesses of optimization models and limits of numerical solvers (students develop these abilities also during any practical test of the course when they practically solve relevant decision problems).
4. Be able to describe any aspect of a mathematical program and of the main algorithms for the solution of linear, linear integer, and nonlinear programs (students develop these abilities also during any practical test of the course when they practically solve relevant decision problems by working in groups).
5. Get mathematical basis to self-study solution techniques for complex mathematical programs such as nonconvex and multi-objective programming.
|
6
|
MAT/09
|
48
|
-
|
-
|
-
|
Attività formative affini ed integrative
|
ENG |
1049285 -
BIOINFORMATICS IN PLANT PATHOLOGY
(obiettivi)
General skills A modern plant pathologist has to face this complex reality, plan experiments at real scale, "sucks the marrow out of -omics" (par. Walt Whitman) by using bioinformatics tools, individuate biocontrol agents and stimulate plant self-defences. In relation to this, the main aim of this course is forming young scientists in managing plant diseases tout court by the mean of the -omics plus bioinformatics tools Specific skills A) Knowledge and understanding - Introduction to Plant Pathology: the concept of disease - The Pathogens: from virus to fungi, different strategies for different pathogens - The Pathobiome concept - Integrated Pest Management: how to couple food security with food safety - Pathogenomics; how genomics meets pathogen B) Applying knowledge and understanding - how using specific terminology of a plant pathologist - Identify the main factors causing disease in major crops - Establish the salient features of a cycle of infection of a pathogen - Identify important activities and genes in plant resistance - Identify the important activities and genes in the virulence of pathogens - Outline novel strategies for controlling plant diseases C) Making judgements - Identification of new perspectives / development strategies for the protection of crops - Evaluation, interpretation and reprocessing of literature data in the field of molecular plant-microbe interactions D) Communication skills - Ability to illustrate the results of research and experimentation carried out in the context of the exercises - Ability to understand manuscripts in English and to indicate the salient features of the oral exam E) Learning skills - Learn the specific terminology of plant pathologist - Logically connect the acquired knowledge in the field of molecular plant-microbe interactions - Identify the most relevant topics of the subjects dealt with - how consulting specialist databases (e.g. ncbi, kegg, string, uniprot)
|
6
|
AGR/12
|
48
|
-
|
-
|
-
|
Attività formative affini ed integrative
|
ENG |
|
Secondo semestre
Insegnamento
|
CFU
|
SSD
|
Ore Lezione
|
Ore Eserc.
|
Ore Lab
|
Ore Studio
|
Attività
|
Lingua
|
Gruppo opzionale:
Gruppo OPZIONALE - (visualizza)
|
12
|
|
|
|
|
|
|
|
10592651 -
COMPUTATIONAL SYSTEMS BIOLOGY
|
Erogato in altro semestre o anno
|
1049268 -
SIGNAL PROCESSING AND INFORMATION THEORY
(obiettivi)
The course consists in a introduction to signal processing fundamentals. It is intended to provide an understanding and working familiarity with the fundamentals of signal processing and is suitable for a wide range of people involved with and/or interested in signal processing applications. Its goals are to enable students to apply digital signal processing concepts to their own field of interest, to make it possible for them to read the technical literature on digital signal processing, and to provide the background for the study of more advanced topics and applications.
|
6
|
ING-INF/03
|
48
|
-
|
-
|
-
|
Attività formative affini ed integrative
|
ENG |
1049269 -
ALGORITHMS
(obiettivi)
Obiettivi generali
Acquisire la conoscenza di base delle più note tecniche algoritmiche di progettazione e delle tecniche di valutazione della correttezza e della complessità degli algoritmi.
Obiettivi specifici
Conoscenza e comprensione: Al termine del corso gli studenti posseggono le conoscenze di base relative a: - tecniche fondamentali di progettazione algoritmica; - analisi della correttezza e della efficienza degli algoritmi;
Applicazione di conoscenza e comprensione: Al termine del corso gli studenti sono in grado di: - analizzare le prestazioni di un algoritmo tramite strumenti matematici rigorosi; - analizzare algoritmi e strutture dati - progettare ed analizzare nuovi algoritmi, sfruttando le metodologie presentate durante il corso.
Autonomia di giudizio: Lo studente alla fine del corso deve essere in grado di scegliere autonomamente qual è la tecnica algoritmica più adatta da applicare per un determinato problema e valutare tra più soluzioni algoritmiche per un certo problema qual’è da preferirsi.
Abilità comunicative: Lo studente acquisirà la capacità di esprimere un’idea algoritmica tramite l’uso di uno pseudocodice.
Capacità di apprendimento: Lo studente avrà acquisito la capacità di analizzare un problema, progettare le necessarie strutture dati e un algoritmo corretto ed efficiente che lo risolva.
|
6
|
INF/01
|
48
|
-
|
-
|
-
|
Attività formative affini ed integrative
|
ENG |
1049270 -
COMPLEX BIOMOLECULAR NETWORKS
|
Erogato in altro semestre o anno
|
1049271 -
PLANT FUNCTIONAL GENOMICS
|
Erogato in altro semestre o anno
|
1049272 -
PRINCIPLES OF GENERAL PATHOLOGY
|
Erogato in altro semestre o anno
|
1049273 -
OPTIMIZATION METHODS FOR COMPUTATIONAL BIOLOGY
|
Erogato in altro semestre o anno
|
1049285 -
BIOINFORMATICS IN PLANT PATHOLOGY
|
Erogato in altro semestre o anno
|
|
AAF1749 -
FOR THE FINAL TEST
(obiettivi)
The final exams consists of writing, presenting and discussing a thesis, developed autonomously by the students, which illustrates in a coherent and detailed manner the problem tackled during the practical training and all the activities carried out to develop its solution.
|
9
|
|
72
|
-
|
-
|
-
|
Per la prova finale e la lingua straniera (art.10, comma 5, lettera c)
|
ENG |
AAF1750 -
FURTHER LINGUISTIC KNOWLEDGE
|
3
|
|
24
|
-
|
-
|
-
|
Ulteriori attività formative (art.10, comma 5, lettera d)
|
ENG |
AAF1752 -
STAGES AND PROFESSIONAL TRAINING
(obiettivi)
Acquisition of manual, methodological and organizational skills aimed at the elaboration of technical-scientific issues.
|
3
|
|
24
|
-
|
-
|
-
|
Ulteriori attività formative (art.10, comma 5, lettera d)
|
ENG |
AAF1753 -
OTHER KNOWLEDGE USEFUL FOR ENTERING INTO THE WORK MARKET
(obiettivi)
Basic training in laboratorytechniques aimed to improve professionalization.
|
3
|
|
24
|
-
|
-
|
-
|
Ulteriori attività formative (art.10, comma 5, lettera d)
|
ENG |
- -
Elective course
|
12
|
|
96
|
-
|
-
|
-
|
Attività formative a scelta dello studente (art.10, comma 5, lettera a)
|
ENG |