1049258 -
MOLECULAR BIOLOGY AND GENOMICS
(obiettivi)
The new generation of sequencing technologies offered extraordinary opportunities for high-throughput functional genomic studies. These tools have been applied in a variety of contexts, including whole-genome sequencing, discovery of transcription factor binding loci, mapping out DNA accessibility and RNA expression profiling. Intriguingly, recent efforts in annotation led to the discovery of novel noncoding RNA genes that control temporal and/or spatial gene expression along cell differentiation. Aim of the course is the integration of the knowledge of the modern molecular biology with high-throughput technologies. Besides RNA metabolism and noncoding content, the course will introduce NGS technologies, highlight different applications of these new tools and show ways to analyse data in the context of completed genome sequences of different model organisms. The course will also feature methods to assist the study and the prioritization of gene lists from large-scale gene expression data.
-
BALLARINO MONICA
( programma)
Il corso prevede 48 ore di lezioni teoriche, esercizi al computer e seminari.
Biologia Molecolare (24 ore) Introduzione al Genoma ed alla complessità funzionale dei sistemi eucarioti. Cenni sui meccanismi di maturazione dell’RNA: capping, splicing e poliadenilazione. Splicing alternativo e regolazione dello splicing; Elementi di terapia genica (Distrofia Muscolare di Duchenne); Esporto e stabilità dell’RNA; Struttura della cromatina e modificazioni istoniche; Il modello dell’mRNA Factory: RNA non codificanti (ncRNA); RNA interference: scoperta, meccanismi di azione e fattori coinvolti; microRNA (miRNA): biogenesi, meccanismi di azione e ruolo nel differenziamento e nella proliferazione; long non-coding RNA (lncRNA); RNA circolari RNA (circRNAs); RNAi e cromatina.
Genomica Strutturale (12 ore). Evoluzione del concetto di gene: dalle teorie di Darwin sull’ereditarietà all’Era post-genomica; il Progetto Genoma Umano; il Progetto Encode. Tecnologie di sequenziamento del DNA e del genoma (Sanger, Maxam-Gilbert, BAC). Sequenziamento automatizzato e Next-Generation Sequencing (NGS). La tecnologia "Illumina". Anatomia dei genomi, grandezza del genoma e numero di geni. Il DNA non codificante (ncDNA). Tecnologie di sequenziamento dell’RNA. Il trascrittoma e l’analisi high-throughput dell’espressione genica; WET lab e DRYLAB applicati all’analisi di un tipico esperimento di RNA-seq (FASTQ, PHRED quality score, FASTQC). Identification de-novo e analisi dell’espressione differenziale di mRNA e RNAs non-codificanti (ncRNA). Approcci genetici e biochimici per lo studio dell’interattoma. Il sistema del “two-hybrid”; Immunoprecipitazione, Co-immunoprecipitazione, Protein tagging e saggi di pull-down. Studio delle interazioni tra PROTEINE (ChIP) e RNA (ChIRP) con la cromatina: le tecniche di i) Chromatin Immunoprecipitation (ChIP) e di ii) Chromatin Isolation by RNA Purification (ChIRP). Identificazione e studio di domini topologici (TADs). 3C, 5C, Hi-C e ChIA-PET.
Genomica Funzionale (6 ore). Approcci di genetica Forward e Reverse. Sistemi modello: pros e cons. Editing Genomico: il sistema CRISPR/CAS9. Screening omici basati su RNAi e CRISPR. Analisi funzionale di mRNA e non-coding RNA (ncRNA) in sistemi di differenziamento muscolari e neuronali (topo e uomo).
Risorse web per l’analisi in silico di dati genomici (6 ore). Esercizi in aula informatizzata. Elaborazione ed interpretazione di dati genomici. Database biologici (primari, secondari, specializzati); il formato FLAT; NCBI: accesso via Taxonomy, Gene; Protein Map Viewer, Pubmed and Pubmed MeSH, Entrez; Genome browsers (UCSC), Ensembl, DDBJ, UniProt; Elementi di gene ontology (GO). miRBase, TargetScan e miRTARBASE.
Un libro di testo scelto tra i seguenti:
R.F. Weaver Molecular Biology, Mc Graw Hill, V Edition Watson J. D et al Molecular Biology of the Gene, Zanichelli VII Edition Arthur M. Lesk 2009, “INTRODUZIONE ALLA GENOMICA”, Zanichelli Greg Gibson, Spencer V. Muse 2004, “INTRODUZIONE ALLA GENOMICA”, Zanichelli Tom Strachan, Judith Goodship, Patrick Chinnery 2016, “GENETICA E GENOMICA”, Zanichelli
Per un immediato aggiornamento dei testi o del materiale didattico distribuiti dai docenti consultare la pagina web del corso: https://elearning2.uniroma1.it
(Date degli appelli d'esame)
|
6
|
BIO/11
|
48
|
-
|
-
|
-
|
Attività formative caratterizzanti
|
ENG |
Gruppo opzionale:
Gruppo OPZIONALE - (visualizza)
|
12
|
|
|
|
|
|
|
|
1049267 -
MODELLING AND SIMULATION OF BIOMOLECULAR DYNAMICAL SYSTEMS
(obiettivi)
This course aims to provide students with a practical and hands-on experience with common modeling and simulation tools in molecular biology. It would be expected that after completing this course a student would be able to model and simulate using Matlab a biomolecular systems like, for example, a gene regulatory network using the appropriate methodology. Further, students will understand the basic theory behind these modeling tecniques and critically analyze the results of their analysis.
-
FARINA LORENZO
( programma)
Introduzione alla modellistica matematica. Elementi di teoria dei sistemi. Modelli di interazione genica e reti. Identificazione di geni regolati dal ciclo cellulare.
Materiale didattico fornito dal docente
(Date degli appelli d'esame)
|
6
|
ING-INF/06
|
48
|
-
|
-
|
-
|
Attività formative affini ed integrative
|
ENG |
1049268 -
SIGNAL PROCESSING AND INFORMATION THEORY
-
COLONNESE STEFANIA
( programma)
Rappresentazione, misura ed estrazione dell’informazione contenuta nei dati. Sorgenti di informazioni, entropia, informazione mutua. Fondamenti di codifica di canale. Decodifica di codici senza memoria e con memoria. Acquisizione di segnali ed immagini, campionamento e quantizzazione. Il rumore di osservazione. Filtraggio. Rappresentazione di segnali ed immagini nel dominio di Fourier. Rappresentazione compatta di segnali ed immagini: Trasformata di Karounen Loewe, analisi a componenti principali (PCA). Principi di rivelazione e stima di segnale. Riconoscimento di pattern mediante correlazione per stima di ritardo e spostamento.
DISPENSE: DISPONIBILI SULLA PAGINA MOODLE DEL CORSO TESTO: GAETANO SCARANO ELABORAZIONE STATISTICA DEI SEGNALI (VOL.I)
(Date degli appelli d'esame)
|
6
|
ING-INF/03
|
48
|
-
|
-
|
-
|
Attività formative affini ed integrative
|
ENG |
1049269 -
ALGORITHMS
(obiettivi)
this course is an introduction to algorithms with special emphasis given to those algorithmic problems and techniques that have the greatest impact for bioinformatics.
-
RODOLA' EMANUELE
( programma)
- Algoritmi e strutture dati: generalità ed esempi. Introduzione alla nozione di costo (tempo e spazio di memoria). - Notazioni asintotiche per le funzioni di costo e metodi di analisi (caso peggiore, medio, migliore). - Metodi di analisi di algoritmi ricorsivi: albero della ricorsione, iterazione, sostituzione, Master Theorem. - Tipi di dato astratto (pile, code, alberi) e loro implementazioni. Algoritmi di visita di un albero. - Algoritmi di ordinamento incrementali (descrizione, implementazione e analisi): SelectionSort, InsertionSort, BubbleSort, HeapSort, MergeSort, QuickSort. Lower bound sul costo dell'ordinamento per modello basato su confronti. - Algoritmi di ordinamento di interi (descrizione, implementazione e analisi): IntegerSort, BucketSort, RadixSort. - Tipo di dato Dizionario. Alberi di ricerca binari. Alberi AVL. - Tavole Hash. - Grafi e loro rappresentazione. Algoritmi di visita (descrizione, implementazione e costo). - Tecnica algoritmica greedy. Minimo albero ricoprente e rispettivo calcolo basato su algoritmo greedy. Algoritmi di Kruskal, di Prim e di Boruvka. - Cammini minimi su grafi e relativi algoritmi (descrizione, implementazione e analisi): calcolo delle distanze, algoritmo di Bellman e Ford, calcolo dei cammini minimi a sorgente singola su grafi aciclici, algoritmo di Dijkstra.
Il materiale di studio viene fornito completamente sul sito di riferimento del corso. Come materiale integrativo vengono suggeriti di volta in volta capitoli selezionati dai seguenti testi:
T.H. Cormen, C.Papadimitriou, U. Vazirani. Introduzione agli algoritmi J. Kleinberg, E. Tardos Algorithm Design S. Dasgupta, C. Papadimitriou, U. Vazirani Algorithms C. Demetrescu, I. Finocchi, G.F. Italiano Algoritmi e strutture dati
(Date degli appelli d'esame)
|
6
|
INF/01
|
48
|
-
|
-
|
-
|
Attività formative affini ed integrative
|
ENG |
1049270 -
COMPLEX BIOMOLECULAR NETWORKS
(obiettivi)
The course aims to provide basics concepts and tools for complex networks analysis. The attendee will be able to apply complex networks concepts to biological networks and explore the underlying process and molecular related issues.
-
MARCHETTI SPACCAMELA ALBERTO
( programma)
1.Algorithms and Complexity Computational complexity of algorithms and programs - Fast versus Slow Algorithms - Big-O Notation - Algorithm Design Techniques – Tractable versus Intractable Problems - NP-complete problems.
2. Algoritmic Techniques Greedy Algorithms - Dynamic Programming - Exhaustive Search - Branch-and-Bound Algorithms - Heuristics – Branch and Bound (these techniques are introduced when they are applied in solving problems considered in sections 4-6).
3. Graph Algorithms Basic definition on Graphs – Memory representation – Connectivity - Shortest path, Eulerian path, Traveling Salesmna problem, Hamiltonia path.
4. DNA Assembling Shortest Superstring Problem - DNA Arrays as an Alternative Sequencing Technique - Sequencing by Hybridization - SBH as a Hamiltonian Path Problem - SBH as an Eulerian Path Problem - Fragment Assembly in DNA Sequencing – Overlap-Layout-Consensus assembly- De Bruijn graph assembly – Scaffolding.
5. HiddenMarkovModels CG-Islands and the “Fair Bet Casino” – Definition of Hidden Markov Models - Decoding Algorithm - HMM Parameter Estimation.
6. Clustering and Trees Gene Expression Analysis - Hierarchical Clustering - k-Means Clustering - Clustering and Corrupted Cliques - Evolutionary Trees - Distance-Based Tree Reconstruction - Reconstructing Trees from Additive Matrices - Evolutionary Trees and Hierarchical Clustering - Character-Based Tree Reconstruction - Small Parsimony Problem - Large Parsimony Problem.
7. Advanced topics in large networks and phylogenetic recontructions.
Libro di Testo Neil C. Jones, Pavel A. Pevzner: An Introduction to Bioinformatics Algorithms, MIT Press (capp. 2,5.1-5.3, 6, 8,10, 11)
Altri testi distribuiti in classe e disponibili sulla piattaforma e-learning
Martin Vingron, Jens Stoye, Hannes Luz Algorithms for Phylogenetic Reconstructions, Notes
Slides delle lezioni
Materiale (suggerito) per i seminari
(Date degli appelli d'esame)
|
6
|
ING-INF/05
|
48
|
-
|
-
|
-
|
Attività formative affini ed integrative
|
ENG |
1049271 -
PLANT FUNCTIONAL GENOMICS
(obiettivi)
The aim of the course is to provide a theoretical knowledge of plant genomes, and practical explanation of the techniques used in plant functional genomics, i.e. a large-scale analysis of the function of the different gene products to understand how the genome generates the phenotype of the plant. Insights will be given into the new information that will be generated from whole genome-/proteome-/metabolome analysis. The course will cover the following concepts: array and sequencing based methods; reverse and forward genetics; comparison of plant genomes; epigenomics; proteomics and metabolomics. Also covered are robotization, miniaturization (single-cell studies) and high-throughput-screenings. Finally, the course will introduce methods for visualization and analysis of high-density data.
-
FERRARI SIMONE
( programma)
Module I (3 cfu)
INTRODUCTORY CONCEPTS - Plant organisms. The plant cell. Nuclear, mitochondrial and plastid genome of plants. Reproduction of plant organisms. -Basic concepts of genetics. Genetic polymorphisms. Genetic and molecular markers. Genetic and physical maps. Backcross and inbreeding. Heterosis. Recombinant Inbred Lines. Quantitative Trait Loci.
ANALYSIS OF PLANT GENOMES AND USE OF GENOMICS IN PLANT BREEDING - Evolution of plant genomes. Repetitive DNA; polyploidy; sequencing of genomes; the genome of Arabidopsis thaliana. - Comparative genomics; identification of orthologous genes in different species, synteny. Databases of plant genomes. Genome-wide association studies. Development of new plant varieties through marker assisted selection.
PLANT EPIGENETICS AND EPIGENOMICS - Epigenetic modifications: DNA methylation; histone changes; Non-coding RNAs: siRNA, microRNA; transcriptional and post-transcriptional gene silencing; role of silencing in maintaining the integrity of the genome. - Generation and maintenance of epigenetic modifications; epialleles; large-scale analysis of the epigenome; transposons.
Module II (3 cfu)
DIRECT AND REVERSE GENETICS - Analysis of gene function: direct and reverse genetic approaches in plants. Mutagenesis by insertion in plants. Overexpression and silencing. Map-based and deep sequence-based identification of mutations. (4 h). - From mutants to transgenic plants of biotechnological interest. Natural genetic variability as a source of characteristics of biotechnological interest. TILLING and ecoTILLING. Genome-Wide Association Studies to identify regions of DNA important for influencing a desired phenotype. (4 h) - Genome editing: CRISPR/Cas9 (2 h) - Chemical genomics in plant biology. "Click" chemistry. Single cell genomics. (2 h)
TRANSCRIPTOME AND INTERACTOME ANALYSES IN PLANTS - ESTs, cDNA-AFLPs, Microarrays, DNA Chips, SAGE. RNA sequencing, sequence analysis and their applications (4 h) -Transcriptomic analysis on a single cell or individual tissues: laser capture; FACS on protoplasts labeled with fluorescent proteins. Databases of plant transcriptomes. (4 h) - Examples of networks and correlation analysis of the expression of multiple genes. (2 h) - Interactomics (2 h)
- Teaching material provided through E-Learning (articles, reviews, lectures slides); - Biotecnologie Sostenibili - Galbiati et al. – EDAGRICOLE - Biotecnologie e Genomica delle Piante - Rao e Leone - Idelson-Gnocchi (acronimo BGP) - Biochemistry and Molecular Biology of Plants, - Buchanan, Gruissem e Jones, 2° ed., Wiley Blackwell
(Date degli appelli d'esame)
-
DE LORENZO GIULIA
( programma)
Module I (3 cfu)
INTRODUCTORY CONCEPTS - Plant organisms. The plant cell. Nuclear, mitochondrial and plastid genome of plants. Reproduction of plant organisms. -Basic concepts of genetics. Genetic polymorphisms. Genetic and molecular markers. Genetic and physical maps. Backcross and inbreeding. Heterosis. Recombinant Inbred Lines. Quantitative Trait Loci.
ANALYSIS OF PLANT GENOMES AND USE OF GENOMICS IN PLANT BREEDING - Evolution of plant genomes. Repetitive DNA; polyploidy; sequencing of genomes; the genome of Arabidopsis thaliana. - Comparative genomics; identification of orthologous genes in different species, synteny. Databases of plant genomes. Genome-wide association studies. Development of new plant varieties through marker assisted selection.
PLANT EPIGENETICS AND EPIGENOMICS - Epigenetic modifications: DNA methylation; histone changes; Non-coding RNAs: siRNA, microRNA; transcriptional and post-transcriptional gene silencing; role of silencing in maintaining the integrity of the genome. - Generation and maintenance of epigenetic modifications; epialleles; large-scale analysis of the epigenome; transposons.
Module II (3 cfu)
DIRECT AND REVERSE GENETICS - Analysis of gene function: direct and reverse genetic approaches in plants. Mutagenesis by insertion in plants. Overexpression and silencing. Map-based and deep sequence-based identification of mutations. (4 h). - From mutants to transgenic plants of biotechnological interest. Natural genetic variability as a source of characteristics of biotechnological interest. TILLING and ecoTILLING.. Genome-Wide Association Studies to identify regions of DNA important for influencing a desired phenotype. (4 h) - Genome editing: CRISPR/Cas9 (2 h) - Chemical genomics in plant biology. "Click" chemistry. Single cell genomics. (2 h)
TRANSCRIPTOME AND INTERACTOME ANALYSES IN PLANTS - ESTs, cDNA-AFLPs, Microarrays, DNA Chips, SAGE. RNA sequencing, sequence analysis and their applications (4 h) -Transcriptomic analysis on a single cell or individual tissues: laser capture; FACS on protoplasts labeled with fluorescent proteins. Databases of plant transcriptomes. (4 h) - Examples of networks and correlation analysis of the expression of multiple genes. (2 h) - Interactomics (2 h)
- Teaching material provided through E-Learning (articles, reviews, lectures slides); - Biotecnologie Sostenibili - Galbiati et al. – EDAGRICOLE - Biotecnologie e Genomica delle Piante - Rao e Leone - Idelson-Gnocchi (acronimo BGP) - Biochemistry and Molecular Biology of Plants, - Buchanan, Gruissem e Jones, 2° ed., Wiley Blackwell
|
6
|
BIO/04
|
48
|
-
|
-
|
-
|
Attività formative affini ed integrative
|
ENG |
1049272 -
PRINCIPLES OF GENERAL PATHOLOGY
-
CAMPESE ANTONIO FRANCESCO
( programma)
-Scopi, vantaggi e limiti della generazione e dell’utilizzo dei modelli murini geneticamente modificati per lo studio e la cura delle patologie umane (2 ore) -Aspetti legislativi della sperimentazione animale (Regola delle 3R, dLGS 26/2014) e relative ricadute sulla bioinformatica: i metodi alternativi; i protocolli di sperimentazione animale; i registri e i database informatici (3 ore); -Mantenimento delle colonie di animali geneticamente modificati e relativi strumenti bioinformatici (2 ore) -Metodologie e strumenti informatici per la generazione di modelli murini geneticamente modificati ‘convenzionali’: topi transgenici e topi ‘knock-out’ (4 ore) e ‘condizionali’ e/o inducibili: il sistema Cre/LoxP; topi ‘knock-in’ condizionali; geni ‘reporter’ (4 ore) -Esempi di modelli murini per lo studio di patologie umane: leucemie, tumori solidi, malattie autoimmuni (3 ore) -Strumenti bioinformatici per la potenziale validazione di modelli murini di patologia umana (2 ore) -Seminari sulle applicazioni bioinformatiche nell'utilizzo dei modelli murini di patologie umane (4 ore)
Materiale didattico e pubblicazioni scientifiche segnalate durante il corso.
-
PO AGNESE
( programma)
The topics will be: 1) Getting started and general aspects of molecular and cellular pathology. Concept and causes of alteration in the cell, cellular and tissue homeostasis, Cellular damage: causes, molecular mechanisms, responses and adaptations, Cell death and its manifestations: necrosis and apoptosis 2) Next generation Sequencing (NGS): introduction to NGS tecniques. Illumina platform, Ion Torrent. Applications: Genome Sequencing, Whole exome sequencing, Targeted sequencing, NGS-based comprehensive genomics: DNA methylation, chromatin accessibility and modifications. Analysis of NGS derived data: bioinformatics analysis, analysis of the transcriptome and of the mirnome. Examples of the use of NGS for biomedical research. Data mining on available databases. 3) Molecular and cellular pathology of cancer: Definition and classification of tumors, Stages of tumor progression: initiation, promotion, progression, invasiveness and metastasis, Dominant and recessive mutations: oncogenes and tumor suppressor, molecular basis of neoplastic transformation, invasiveness, metastasization, Identification of tumor markers. Significance of tumor markers in the prevention and staging/classification of tumors 4) Chronic degenerative diseases: diabetes mellitus, metabolic diseases 5) Pathogenetic mechanisms of non-coding RNAs: microRNAs and long non-coding RNAs. microRNA: biogenesis, deregulation mechanisms in pathologies, circulating microRNAs; long non-coding RNA: biogenesis, mechanisms of action, examples of long non-coding deregulated in pathologies. Circular RNAs. 6) Stem cells: embryonic stem cells, adult stem cells. Therapeutic applications of stem cells. Cancer stem cells: biological features and epigenetic regulation. 7) Circulating nucleic acids as markers for diseases. The discovery, challenges an approaches for the identification and evaluation of circulating RNAs and DNAs.
notes and scientific papers given by the teacher
(Date degli appelli d'esame)
|
6
|
MED/46
|
48
|
-
|
-
|
-
|
Attività formative affini ed integrative
|
ENG |
1049273 -
OPTIMIZATION METHODS FOR COMPUTATIONAL BIOLOGY
(obiettivi)
We aim to introduce students to the analysis of decision problems that arise in bioinformatics and health management. Students would be able to: model as mathematical programming problem to be used as a support to the decision maker, use algorithm suitable to each model for the solution, make post-optimality analysis.
-
SAGRATELLA SIMONE
( programma)
Part 1: Mathematical programming Things to know: - structure of an optimization problem - feasiblility, unboundedness, and optimality - active, satisfied, violated, and redundant constraints Abilities to acquire: - recast a model as a problem in general form - understand if an optimization problem is an LP, an ILP, or an NLP
Part 2: Linear Programming Things to know: - properties of linear functions - convex sets and polyhedra - vertices of a polyhedron and their properties - fundamental theorem of LP - solution set properties Abilities to acquire: - graphical solution - computation of all the vertices of a polyhedron - (graphical) simplex algorithm
Part 3: Integer Linear Programming Things to know: - linear formulations and their properties - optimal linear formulations Abilities to acquire: - computation of an optimal linear formulation - branch and bound method for knapsack problems and graphical solution
Part 4: NonLinear Programming Things to know: - local and global solutions - feasiblility, unboundedness, and optimality in nonlinear programming - convex problems and their properties Abilities to acquire: - understand if a problem is (strictly) convex
lecture notes of the teacher
(Date degli appelli d'esame)
|
6
|
MAT/09
|
48
|
-
|
-
|
-
|
Attività formative affini ed integrative
|
ENG |
1049285 -
BIOINFORMATICS IN PLANT PATHOLOGY
(obiettivi)
Recent advances in -omics technology, namely genomics, proteomics and metabolomics allow to go deeper into the understanding of the subtle mechanism underlying host-pathogen interactions. This is made possible by next generation sequencers that uncover entire genome or exome of host and pathogens while interacting, skipping complicate procedures for separating the two challengers. Moreover, we are moving faster in re-shaping plant pathology from the one disease-one pathogen dogma, as embodied in Koch's postulate, to the pathobiome concept. Meta-omic tools shed light on the inter-reign network originating the disease of the host in its complexity. The analysis and understanding of the huge amount of data generated by a single experiment represents currently the classical bottleneck. In relation to this, bioinformatics plays a crucial role in data capture, analysis and integration. Plant pathologists have to answer to very concrete and problematic question, today, more, and more in the next future: food security, food safety and food quality. Actually, plant disease burden current food production, accounting for more than 40% of food losses. Climate change and globalization enhance pathogens ability and mobility worldwide. Nevertheless, for environmental as well as political reasons, pathogens cannot be controlled anymore by using pesticides and/or GMO plants. A more sustainable, "green" and integrated pest management is needed. A modern plant pathologist has to face this complex reality, plan experiments at real scale, "sucks the marrow out of -omics" (par. Walt Whitman) by using bioinformatics tools, individuate biocontrol agents and stimulate plant self-defences. In relation to this, the main aim of this course is forming young scientists in managing plant diseases tout court by the mean of the -omics plus bioinformatics tools.
-
FAINO LUIGI
Per la prima parte, dispense e articoli saranno i testi da cui studiare mentre per la prate del progetto, siti specifici all bionformatica tipo stackoverflow saranno usati
(Date degli appelli d'esame)
-
REVERBERI MASSIMO
( programma)
MODULO 1: PATOLOGIA vegetale (12 ORE) 1. Introduzione alla patologia vegetale: il concetto di malattia 2. Gli agenti patogeni: dal virus ai funghi, diverse strategie per diversi patogeni 3. Gestione integrata delle malattie: come coniugare la sicurezza alimentare con la salubrità alimentare MODULO 2: PATOLOGIA VEGETALE MOLECOLARE (12 ORE) 1. Il concetto di Patobioma 2. PATOGENOMICA; come la genomica incontra il patogeno MODULO 3: IDENTIFICAZIONE DI EFFETTORI (12 ore) 1. organizzazione dei genomi fungini 2. caratteristiche degli effettori 3. metodi di identificazione MODULO 4: IDENTIFICAZIONE DI GENI DI RESISTENZA (12 ore) 1. i genomi delle piante 2. organizzazione dei genomi delle piante e cluster dei geni R 3. identificazione dei geni di resistenza
MODULO 1: PATOLOGIA VEGETALE GENERALE 1 testo a scelta tra i seguenti: Fondamenti di patologia vegetale, Editore: Pàtron, Edizione:2; A cura di:F. Favaron, F. Scala; Data di Pubblicazione:2017; EAN:9788855533829; ISBN:8855533827 Elementi di Patologia Vegetale, di Belli G, Editore Piccin-Nuona Libraria. Edizione: 2; Data di Pubblicazione: 2011. ISBN: 9788829921294 Fisiologia Vegetale; AUTORI: Taiz Zeiger, ISBN: 978-88-299-2157-7; CODICE PICCIN: 2001230 MODULO 2: PATOLOGIA VEGETALE MOLECOLARE 1 testo a scelta tra i seguenti: • Plant Pathology, Authors: George Agrios; ISBN: 9780120445653; eBook ISBN: 9780080473789; Imprint: Academic Press Per un immediato aggiornamento dei testi o del materiale didattico distribuito dal docente consultare la pagina web del corso: https://elearning2.uniroma1.it
|
6
|
AGR/12
|
48
|
-
|
-
|
-
|
Attività formative affini ed integrative
|
ENG |
|